[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Mobility management on 5G Vehicular Cloud Computing systems

Published: 01 April 2019 Publication History

Abstract

Fifth generation (5G) Vehicular Cloud Computing (VCC) systems use heterogeneous network access technologies to fulfill the requirements of modern services. Multiple services with different Quality of Service (QoS) constraints could be available in each vehicle, while at the same time, user requirements and provider policies must be addressed. Therefore, the design of efficient Vertical Handover (VHO) management schemes for 5G-VCC infrastructures is needed. In this paper, a novel VHO management scheme for 5G-VCC systems is proposed. Whenever the user satisfaction grade becomes less than a predefined threshold, VHO is initiated and network selection is performed, considering the velocity of the vehicle, network characteristic criteria such as throughput, delay, jitter and packet loss, as well as provider policy criteria such as service reliability, security and price. The proposed scheme uses linguistic values for VHO criteria attributes represented by Interval Valued Pentagonal Fuzzy Numbers (IVPFNs) to express the information using membership intervals. The VHO scheme is applied to a 5G-VCC system which includes 3GPP Long Term Evolution (LTE) and IEEE 802.16 Worldwide Interoperability for Microwave Access (WiMAX) Macrocells and Femtocells, as well as IEEE 802.11p Wireless Access for Vehicular Environment (WAVE) Road Side Units (RSUs). Performance evaluation shows that the suggested method ensures the Always Best Connection (ABC) principle, while at the same time outperforms existing VHO management schemes.

References

[1]
R. Vilalta, V. Lopez, A. Giorgetti, S. Peng, V. Orsini, L. Velasco, R. Serral-Gracia, D. Morris, S. De Fina, F. Cugini, et al., TelCofog: a unified flexible fog and cloud computing architecture for 5G networks, IEEE Commun. Mag. 55 (2017) 36–43.
[2]
A. Fahmin, Y.-C. Lai, M.S. Hossain, Y.-D. Lin, Performance modeling and comparison of NFV integrated with SDN: under or aside?, J. Netw. Comput. Appl. 113 (2018) 119–129. Elsevier.
[3]
F.Z. Yousaf, M. Bredel, S. Schaller, F. Schneider, NFV and SDN-key technology enablers for 5G networks, IEEE J. Sel. Areas Commun. (2017).
[4]
C.-M. Huang, M.-S. Chiang, D.-T. Dao, H.-M. Pai, S. Xu, H. Zhou, Vehicle-to-Infrastructure (V2I) offloading from cellular network to 802.11p Wi-Fi network based on the Software-Defined Network (SDN) architecture, Veh. Commun. 9 (2017) 288–300.
[5]
F. Malandrino, C.-F. Chiasserini, S. Kirkpatrick, The impact of vehicular traffic demand on 5G caching architectures: a data-driven study, Veh. Commun. 8 (2017) 13–20. Internet of Vehicles.
[6]
T. Bilen, B. Canberk, K.R. Chowdhury, Handover management in software-defined ultra-dense 5G networks, IEEE Netw. 31 (2017) 49–55.
[7]
H. Wang, S. Chen, M. Ai, H. Xu, Localized mobility management for 5G ultra dense network, IEEE Trans. Veh. Technol. 66 (2017) 8535–8552.
[8]
D. Calabuig, S. Barmpounakis, S. Gimenez, A. Kousaridas, T.R. Lakshmana, J. Lorca, P. Lunden, Z. Ren, P. Sroka, E. Ternon, et al., Resource and mobility management in the network layer of 5G cellular ultra-dense networks, IEEE Commun. Mag. 55 (2017) 162–169.
[9]
TS 36.213 version 14.2.0: Evolved Universal Terrestrial Radio Access Network (E-UTRAN) (Release 14), Technical Specification, 3GPP, 2017.
[10]
P802.16/d4—IEEE Draft Standard for Air Interface for Broadband Wireless Access Systems (revision of IEEE Std 802.16-2012). IEEE Standard, 2017.
[11]
1609.12-2016—IEEE Standard for Wireless Access in Vehicular Environments (WAVE)—Networking Services, IEEE Standard, 2016.
[12]
P. Hu, S. Dhelim, H. Ning, T. Qiu, Survey on fog computing: architecture, key technologies, applications and open issues, J. Netw. Comput. Appl. 98 (2017) 27–42. Elsevier.
[13]
K. Zhang, Y. Mao, S. Leng, Y. He, Y. Zhang, Mobile-edge computing for vehicular networks: a promising network paradigm with predictive off-loading, IEEE Veh. Technol. Mag. 12 (2017) 36–44.
[14]
B. Yang, W.K. Chai, Z. Xu, K.V. Katsaros, G. Pavlou, Cost-efficient NFV-enabled mobile edge-cloud for low latency mobile applications, IEEE Trans. Netw. Serv. Manag. (2018).
[15]
X. Huang, R. Yu, J. Kang, Y. He, Y. Zhang, Exploring mobile edge computing for 5G-enabled software defined vehicular networks, IEEE Wirel. Commun. 24 (2017) 55–63.
[16]
M. Sookhak, F.R. Yu, Y. He, H. Talebian, N.S. Safa, N. Zhao, M.K. Khan, N. Kumar, Fog vehicular computing: augmentation of fog computing using vehicular cloud computing, IEEE Veh. Technol. Mag. 12 (2017) 55–64.
[17]
C. Huang, R. Lu, K.-K.R. Choo, Vehicular fog computing: architecture, use case, and security and forensic challenges, IEEE Commun. Mag. 55 (2017) 105–111.
[18]
A. Michalas, A. Sgora, D.D. Vergados, An integrated MIH-FPMIPv6 mobility management approach for evolved-packet system architectures, J. Netw. Comput. Appl. 91 (2017) 104–119. Elsevier.
[19]
T. Taleb, A. Ksentini, R. Jantti, “Anything as a service” for 5G mobile systems, IEEE Netw. 30 (2016) 84–91.
[20]
R.I. Rony, A. Jain, E. Lopez-Aguilera, E. Garcia-Villegas, I. Demirkol, Joint access-backhaul perspective on mobility management in 5G networks, in: Standards for Communications and Networking (CSCN), 2017 IEEE Conference on, IEEE, 2017, pp. 115–120.
[21]
Jain, A.; Lopez-Aguilera, E.; Demirkol, I. (2017): Mobility management as a service for 5G networks. arXiv preprint arXiv:1705.09101.
[22]
L. Zhang, L. Ge, X. Su, J. Zeng, Fuzzy logic based vertical handover algorithm for trunking system, in: Wireless and Optical Communication Conference (WOCC), 2017 26th, IEEE, 2017, pp. 1–5.
[23]
A.B. Zineb, M. Ayadi, S. Tabbane, Fuzzy MADM based vertical handover algorithm for enhancing network performances, in: Software, Telecommunications and Computer Networks (SoftCOM), 2015 23rd International Conference on, IEEE, 2015, pp. 153–159.
[24]
S.D. Roy, S.R.V. Reddy, Signal strength ratio based vertical handoff decision algorithms in integrated heterogeneous networks, Wirel. Pers. Commun. 77 (2014) 2565–2585.
[25]
S.D. Roy, S. Anup, Received signal strength based vertical handoff algorithm in 3G cellular network, in: Signal Processing, Communication and Computing (ICSPCC), 2012 IEEE International Conference on, IEEE, 2012, pp. 326–330.
[26]
E. Skondras, A. Michalas, A. Sgora, D.D. Vergados, A vertical handover management scheme for VANET cloud computing systems, in: Computers and Communications (ISCC), 2017 IEEE Symposium on, IEEE, 2017, pp. 1–6.
[27]
D.B. Mohd, I. Muhammad, et al., IEEE 802.21 based vertical handover in WiFi and WiMAX networks, in: Computers & Informatics (ISCI), 2012 IEEE Symposium on, IEEE, 2012, pp. 140–144.
[28]
F. Guidolin, I. Pappalardo, A. Zanella, M. Zorzi, Context-aware handover policies in HetNets, IEEE Trans. Wirel. Commun. 15 (2016) 1895–1906.
[29]
A. Sarma, S. Chakraborty, S. Nandi, Deciding handover points based on context-aware load balancing in a WiFi–WiMAX heterogeneous network environment, IEEE Trans. Veh. Technol. 65 (2016) 348–357.
[30]
M. Lahby, C. Leghris, A. Adib, New multi access selection method based on mahalanobis distance, Appl. Math. Sci. 6 (2012) 2745–2760.
[31]
Lahby, et al., New Multi Access Selection Method Using Differentiated Weight of Access Interface, IEEE, 2012, pp. 237–242.
[32]
V. Gupta, Network selection in 3G-WLAN interworking environment using TOPSIS, in: Industrial and Information Systems (ICIIS), 2016 11th International Conference on, IEEE, 2016, pp. 512–517.
[33]
N.S. Fitriasari, S.A. Fitriani, R.A. Sukamto, Comparison of weighted product method and technique for order preference by similarity to ideal solution method: complexity and accuracy, in: Science in Information Technology (ICSITech), 2017 3rd International Conference on, IEEE, 2017, pp. 453–458.
[34]
X. Wang, D. Qu, K. Li, H. Cheng, S.K. Das, M. Huang, R. Wang, S. Chen, A flexible and generalized framework for access network selection in heterogeneous wireless networks, Pervasive Mob. Comput. 40 (2017) 556–576.
[35]
Q. Wu, W. Li, R. Wang, P. Yu, An access network selection mechanism for heterogeneous wireless environments, J. Comput. Inf. Syst. 9 (2013) 1799–1807.
[36]
H. Wang, Z. Wang, G. Feng, H. Lv, X. Chen, Q. Zhu, Intelligent access selection in cognitive networks: a fuzzy neural network approach, J. Comput. Inf. Syst. 8 (2012) 8877–8884.
[37]
R.K. Goyal, S. Kaushal, A.K. Sangaiah, The utility based non-linear fuzzy AHP optimization model for network selection in heterogeneous wireless networks, Appl. Soft Comput. 67 (2018) 800–811.
[38]
D.E. Charilas, O.I. Markaki, J. Psarras, P. Constantinou, Application of fuzzy AHP and ELECTRE to network selection, in: Mobile Lightweight Wireless Systems, Springer, 2009, pp. 63–73.
[39]
M.B. Brahim, Z.H. Mir, W. Znaidi, F. Filali, N. Hamdi, QoS-aware video transmission over hybrid wireless network for connected vehicles, IEEE Access 5 (2017) 8313–8323.
[40]
A. Merwaday, I. Güvenç, Handover count based velocity estimation and mobility state detection in dense HetNets, IEEE Trans. Wirel. Commun. 15 (2016) 4673–4688.
[41]
R. Arshad, H. ElSawy, S. Sorour, T.Y. Al-Naffouri, M.-S. Alouini, Velocity-aware handover management in two-tier cellular networks, IEEE Trans. Wirel. Commun. 16 (2017) 1851–1867.
[42]
L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338–353. Elsevier.
[43]
R. Sambuc, Fonctions and floues: application a l'aide au diagnostic en pathologie thyroidienne, Faculté de Médecine de Marseille, 1975.
[44]
P. Liu, F. Jin, A multi-attribute group decision-making method based on weighted geometric aggregation operators of interval-valued trapezoidal fuzzy numbers, Appl. Math. Model. 36 (2012) 2498–2509. Elsevier.
[45]
C. Cornelis, G. Deschrijver, E. Kerre, Advances and challenges in interval-valued fuzzy logic, Fuzzy Sets Syst. 157 (2006) 622–627. Elsevier.
[46]
B. Ashtiani, F. Haghighirad, A. Makui, et al., Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets, Appl. Soft Comput. 9 (2009) 457–461. Elsevier.
[47]
A. Panda, M. Pal, A study on pentagonal fuzzy number and its corresponding matrices, Pac. Sci. Rev. B, Humanit. Soc. Sci. 1 (2015) 131–139. Elsevier.
[48]
M.-S. Chen, S.-W. Wang, Fuzzy clustering analysis for optimizing fuzzy membership functions, Fuzzy Sets Syst. 103 (1999) 239–254. Elsevier.
[49]
M.E. Cintra, H.A. Camargo, M.C. Monard, Genetic generation of fuzzy systems with rule extraction using formal concept analysis, Inf. Sci. 349 (2016) 199–215. Elsevier.
[50]
T.L. Saaty, Decision Making with Dependence and Feedback: The Analytic Network Process, RWS Publications, Pittsburgh, 1996.
[51]
T. Wu, X.-W. Liu, S.-L. Liu, A fuzzy ANP with interval type-2 fuzzy sets approach to evaluate enterprise technological innovation ability, in: Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on, IEEE, 2015, pp. 1–8.
[52]
T.L. Saaty, L.G. Vargas, Diagnosis with dependent symptoms: Bayes theorem and the analytic hierarchy process, Oper. Res. 46 (1998) 491–502. Informs.
[53]
J.-S. Lee, C.-L. Teng, An enhanced hierarchical clustering approach for mobile sensor networks using fuzzy inference systems, IEEE Int. Things J. 4 (2017) 1095–1103.
[54]
J. Andreu-Perez, F. Cao, H. Hagras, G.-Z. Yang, A self-adaptive online brain machine interface of a humanoid robot through a general type-2 fuzzy inference system, IEEE Trans. Fuzzy Syst. 26 (2018) 101–116.
[55]
C. Li, J. Gao, J. Yi, G. Zhang, Analysis and design of functionally weighted single-input-rule-modules connected fuzzy inference systems, IEEE Trans. Fuzzy Syst. 26 (2018) 56–71.
[56]
C.-L. Hwang, K. Yoon, Multiple Attribute Decision Making, Springer, 1981.
[57]
TS 36.839 version 11.1.0: mobility enhancements in heterogeneous networks (Release 11), Technical Specification, 3GPP, 2012.
[58]
J.-W. Lee, S.-J. Yoo, Probabilistic path and data capacity based handover decision for hierarchical macro-and femtocell networks, Mob. Inf. Syst. 2016 (2016).
[59]
Open Street Map (OSM) (2018) : https://www.openstreetmap.org (Accessed 2018).
[60]
M. Behrisch, L. Bieker, J. Erdmann, D. Krajzewicz, SUMO–Simulation of Urban MObility: an overview, in: Proceedings of SIMUL 2011, the Third International Conference on Advances in System Simulation, ThinkMind, 2011.
[61]
Network simulator 3 (NS3) (2018) : https://www.nsnam.org/ (Accessed 2018).
[62]
Hellenic Telecommunications and Post Commission (EETT) (2018) : http://keraies.eett.gr/ (Accessed 2018).
[63]
J. Riordan, Introduction to Combinatorial Analysis, Courier Corporation, 2012.

Cited By

View all
  • (2024)Investigation on wireless communication reliability planning in cloud computing mMTC scenariosIntelligent Decision Technologies10.3233/IDT-23046718:1(223-235)Online publication date: 1-Jan-2024
  • (2024)Optimization of artificial intelligence cloud computing in information management designIntelligent Decision Technologies10.3233/IDT-23045718:1(191-209)Online publication date: 1-Jan-2024
  • (2024)An intelligent parking allocation framework for digital society 5.0Intelligent Decision Technologies10.3233/IDT-23033918:3(2145-2159)Online publication date: 16-Sep-2024
  • Show More Cited By

Index Terms

  1. Mobility management on 5G Vehicular Cloud Computing systems
                Index terms have been assigned to the content through auto-classification.

                Recommendations

                Comments

                Please enable JavaScript to view thecomments powered by Disqus.

                Information & Contributors

                Information

                Published In

                cover image Vehicular Communications
                Vehicular Communications  Volume 16, Issue C
                Apr 2019
                94 pages
                ISSN:2214-2096
                EISSN:2214-2096
                Issue’s Table of Contents

                Publisher

                Elsevier Science Publishers B. V.

                Netherlands

                Publication History

                Published: 01 April 2019

                Author Tags

                1. Vertical Handover (VHO)
                2. Network selection
                3. Vehicular Cloud Computing (VCC)
                4. Software Defined Networks (SDN)
                5. Mobile Edge Computing (MEC)
                6. Fifth generation networks (5G)

                Qualifiers

                • Research-article

                Contributors

                Other Metrics

                Bibliometrics & Citations

                Bibliometrics

                Article Metrics

                • Downloads (Last 12 months)0
                • Downloads (Last 6 weeks)0
                Reflects downloads up to 26 Dec 2024

                Other Metrics

                Citations

                Cited By

                View all
                • (2024)Investigation on wireless communication reliability planning in cloud computing mMTC scenariosIntelligent Decision Technologies10.3233/IDT-23046718:1(223-235)Online publication date: 1-Jan-2024
                • (2024)Optimization of artificial intelligence cloud computing in information management designIntelligent Decision Technologies10.3233/IDT-23045718:1(191-209)Online publication date: 1-Jan-2024
                • (2024)An intelligent parking allocation framework for digital society 5.0Intelligent Decision Technologies10.3233/IDT-23033918:3(2145-2159)Online publication date: 16-Sep-2024
                • (2024)Open Metaverse: Issues, Evolution, and FutureCompanion Proceedings of the ACM Web Conference 202410.1145/3589335.3651898(1351-1360)Online publication date: 13-May-2024
                • (2023)MVSTGN: A Multi-View Spatial-Temporal Graph Network for Cellular Traffic PredictionIEEE Transactions on Mobile Computing10.1109/TMC.2021.312979622:5(2837-2849)Online publication date: 1-May-2023
                • (2023)An overview of LTE/LTE‐A heterogeneous networks for 5G and beyondTransactions on Emerging Telecommunications Technologies10.1002/ett.480634:8Online publication date: 3-Aug-2023
                • (2022)Performance assessment of OppNet routing protocols with real world mobility tracesIntelligent Decision Technologies10.3233/IDT-21008016:2(337-355)Online publication date: 1-Jan-2022
                • (2022)Survey on Artificial Intelligence (AI) techniques for Vehicular Ad-hoc Networks (VANETs)Vehicular Communications10.1016/j.vehcom.2021.10040334:COnline publication date: 1-Apr-2022
                • (2022)Joint optimization of social interactivity and server provisioning for interactive games in edge computingComputer Networks: The International Journal of Computer and Telecommunications Networking10.1016/j.comnet.2022.109028212:COnline publication date: 20-Jul-2022
                • (2020)A Load Balancing Algorithm for 5G Vehicular Cloud Computing SystemsProceedings of the 24th Pan-Hellenic Conference on Informatics10.1145/3437120.3437316(241-244)Online publication date: 20-Nov-2020
                • Show More Cited By

                View Options

                View options

                Media

                Figures

                Other

                Tables

                Share

                Share

                Share this Publication link

                Share on social media