[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

A regularization approach for estimating the type of a plane curve singularity

Published: 01 April 2013 Publication History

Abstract

We address the algebraic problem of analyzing the local topology of each singularity of a plane complex algebraic curve defined by a squarefree polynomial with both exact (i.e. integers or rationals) and inexact data (i.e. numerical values). For the inexact data, we associate a positive real number that measures the noise in the coefficients. This problem is ill-posed in the sense that tiny changes in the input produce huge changes in the output. We design a regularization method for estimating the local topological type of each singularity of a plane complex algebraic curve. Our regularization method consists of the following: (i) a symbolic-numeric algorithm that computes the approximate local topological type of each singularity; (ii) and a parameter choice rule, i.e. a function in the noise level. We prove that the symbolic-numeric algorithm together with the parameter choice rule computes an approximate solution, which satisfies the convergence for noisy data property. We implement our algorithm in a new software package called GENOM3CK written in the Axel free algebraic geometric modeler and in the Mathemagix free computer algebra system. For our purpose, both of these systems provide modern graphical capabilities, and algebraic and geometric tools for exact and inexact input data.

References

[1]
Alexander, J.W., Topological invariant of knots and links. Transactions of the American Mathematical Society. v30. 275-306.
[2]
Bates, D.J., Peterson, C., Sommese, A.J. and Wampler, C.W., Numerical computation of the genus of an irreducible curve within an algebraic set. Journal of Pure and Applied Algebra. v215 i8. 1844-1851.
[3]
Blanchette, J. and Summerfield, M., C++ GUI Programming with Qt 4. 2008. second ed. Prentice Hall US.
[4]
Bochnak, J., Coste, M. and Roy, M.-F., Real Algebraic Geometry. 1998. Ergebnisse der Math. Springer Verlag, Germany.
[5]
Cimasoni, D., Studying the multivariable Alexander polynomial by means of Seifert surfaces. Sociedad Matemática Mexicana. Boletín. Tercera Serie. Soc. Mat. Mexican. v10 i3. 107-115.
[6]
Corless, R.M., Kaltofen, E. and Watt, S.M., Hybrid methods. In: Grabmeier, J., Kaltofen, E., Weispfenning, V. (Eds.), Computer Algebra Handbook, Springer Verlag, Heidelberg, Germany. pp. 112-125.
[7]
de Berg, M., Krefeld, M., Overmars, M. and Schwarzkopf, O., Computational Geometry: Algorithms and Applications. 2008. second ed. Springer, Berlin.
[8]
Engl, H.W., Hanke, M. and Neubauer, A., Regularization of Inverse Problems. 1996. Kluwer Academic Publishers Group, Dordrecht, Netherlands.
[9]
M. Hodorog, B. Mourrain, J. Schicho, GENOM3CK - A library for genus computation of plane complex algebraic curves using knot theory, December 2010. in: ACM SIGSAM Communications in Computer Algebra, vol. 44, issue 174, ISSN:1932-2240, pp. 198-200.
[10]
M. Hodorog, B. Mourrain, J. Schicho, A symbolic-numeric algorithm for computing the Alexander polynomial of a plane curve singularity, in: T. Ida, V. Negru, T. Jebelean, D. Petcu, S. Watt, D. Zaharie (Eds.), Proceedings of the 12th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2010, pp. 21-28.
[11]
Hodorog, M., Mourrain, B. and Schicho, J., An adapted version of the Bentley-Ottmann algorithm for invariants of plane curve singularities. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (Eds.), Lecture Notes in Computer Science, vol. 6784. Springer. pp. 121-131.
[12]
Hodorog, M. and Schicho, J., A regularization method for computing approximate invariants of plane curves singularities. In: SNC 2011, Proceedings of the 2011 International Workshop on Symbolic-Numeric Computation, Association for Computing Machinery New York, New York, USA. pp. 44-53.
[13]
Hodorog, M. and Schicho, J., A symbolic¿numeric algorithm for genus computation. In: Langer, U., Paule, P. (Eds.), Numerical and Symbolic Scientific Computing: Progress and Prospects, Springer Wien, Austria. pp. 65-95.
[14]
V.D.J. Hoeven, G. Lecerf, B. Mourrain, Mathemagix computer algebra system. http://www.mathemagix.org/www/main/index.en.html.
[15]
Kaltofen, E., Yang, Z. and Zhi, L., Structured low rank approximation of a Sylvester matrix. In: Wang, D., Zhi, L. (Eds.), Texts and Monographs in Symbolic Computation, Birkhäuser Verlag, Basel, Switzerland. pp. 69-83.
[16]
Li, C., Pion, S. and Yap, C., Recent progress in exact geometric computation. Journal of Logic and Algebraic Programming. v64 i1. 85-111.
[17]
Liang, C., Mourrain, B. and Pavone, J., Subdivision methods for the topology of 2d and 3d implicit curves. In: Jüttler, B., Piene, R. (Eds.), Geometric Modeling and Algebraic Geometry, Springer, Berlin Heidelberg. pp. 199-214.
[18]
Livingston, C., Knot Theory. 1993. Mathematical Association of America, U.S.A.
[19]
Marker, D., . In: Graduate Texts in Mathematics, Springer, New York, United States of America.
[20]
Milnor, J., Singular Points of Complex Hypersurfaces. 1968. Princeton University Press and the University of Tokyo Press, New Jersey.
[21]
Mourrain, B. and Pavone, J., Subdivision methods for solving polynomial equations. Symbolic Computation. v44. 292-306.
[22]
Munkres, J.R., Topology. 1996. second ed. Prentice Hall, Upper Saddle River, New Jersey, United States of America.
[23]
Neumann, W., Topology of hypersurface singularities. In: Kähler, E. (Ed.), Mathematische Werke (Mathematical Works), Walter de Gruyter GmbH, Berlin, Germany. pp. 727-737.
[24]
Pérez-Díaz, S., Sendra, J.R., Rueda, S.L. and Sendra, J., Approximate parametrization of plane algebraic curves by linear systems of curves. Computer Aided Geometric Design. v27 i2. 212-231.
[25]
. In: Robbiano, L., Abbott, J. (Eds.), Texts and Monographs in Symbolic Computation, Springer Verlag, Wien.
[26]
R.G. Scharein, Knotplot. a program for viewing mathematical knots. Centre for Experimental and Constructive Mathematics, Simon Fraser University, 2002.
[27]
Sendra, J.~R., Winkler, F. and Pérez-Díaz, S., Rational Algebraic Curves. A Computer Algebra Approach. 2008. Springer-Verlag, Berlin Heidelberg, Germany.
[28]
Sommese, A.J. and Wampler, C.W., Numerical Solution of Polynomial Systems Arising in Engineering and Science. 2005. World Scientific, Singapore.
[29]
Stetter, H.J., Numerical Polynomial Algebra. 2004. SIAM, Philadelphia.
[30]
Tikhonov, A.N. and Arsenin, V.A., Solution of Ill-posed Problems. 1977. V. H. Winston & Sons, Washington, D.C.
[31]
Walker, R.J., Algebraic Curves. 1978. Springer-Verlag, New York, United States of America.
[32]
Winkler, F., Polynomial Algorithms in Computer Algebra. 1996. Springer-Verlag, Wien, New York.
[33]
J. Wintz, S. Chau, L. Alberti, B. Mourrain, Axel algebraic geometric modeler. http://axel.inria.fr/.
[34]
Wolfram, S., The Mathematica Book. 2000. Wolfram Research Inc.
[35]
Yamamoto, M., Classification of isolated algebraic singularities by their Alexander polynomials. Topology. v23. 277-287.
[36]
Zeng, Z., A method computing multiple roots of inexact polynomials. In: Proceedings of ISSAC ¿03 International Symposium of Symbolic and Algebraic Computation, ACM Press, New York. pp. 266-272.
[37]
Zeng, Z., Regularization and matrix computation in numerical polynomial algebra. In: Robbiano, L., Abbott, J. (Eds.), Texts and Monographs in Symbolic Computation, Springer Vienna, Austria. pp. 125-162.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Theoretical Computer Science
Theoretical Computer Science  Volume 479, Issue
April, 2013
186 pages

Publisher

Elsevier Science Publishers Ltd.

United Kingdom

Publication History

Published: 01 April 2013

Author Tags

  1. Alexander polynomial
  2. Delta-invariant
  3. Genus
  4. Ill-posed problem
  5. Link of a singularity
  6. Local topological type
  7. Plane curve singularity
  8. Regularization
  9. Symbolic-numeric algorithm

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media