[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Lower bounds for restricted read-once parity branching programs

Published: 14 August 2006 Publication History

Abstract

We prove the first lower bounds for restricted read-once parity branching programs with unlimited parity nondeterminism where for each input the variables may be tested according to several orderings. Namely, sums of k graph-driven ⊕ BP1s with polynomial size graph-orderings are under consideration. We prove lower bounds for the characteristic function of linear codes. We generalize a lower bound by Savický and Sieling (see [P. Savický, D. Sieling, A hierarchy result for read-once Branching programs with restricted parity nondeterminism, Theoret. Comput. Sci. 340 (2005) 594-605]) and recent results on graph-driven parity branching programs.

References

[1]
{1} B. Bollig, S. Waack, P. Woelfel, Parity graph-driven read-once branching programs and an exponential lower bound for integer multiplication, in: Proc. Second IFIP, 2002.]]
[2]
{2} B. Bollig, P. Woelfel, A lower bound technique for nondeterministic graph-driven read-once branching programs and its applications, in: Proc. 27th MFCS, Lecture Notes in Computer Science, Vol. 2420, Springer, Berlin, 2002.]]
[3]
{3} A. Borodin, A. Razborov, R. Smolensky, On lower bounds for read-k-times branching programs, Comput. Complexity 3 (1993) 1-18.]]
[4]
{4} H. Brosenne, M. Homeister, S. Waack, Graph-driven free parity BDDs: Algorithms and lower bounds, in: Proc. 26th MFCS, Lecture Notes in Computer Science, Vol. 2136, Springer, Berlin, 2001, pp. 212-223.]]
[5]
{5} H. Brosenne, M. Homeister, S. Waack, Lower bounds for general graph-driven read-once parity branching programs, in: Proc. 28th MFCS, Lecture Notes in Computer Science, Vol. 2747, Springer, Berlin, 2003, pp. 290-299.]]
[6]
{6} R.E. Bryant, Symbolic manipulation of Boolean functions using a graphical representation, in: Proc. 22nd DAC, IEEE, Piscastaway, NJ, 1985, pp. 688-694.]]
[7]
{7} R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Trans. Comput. 35 (1986) 677-691.]]
[8]
{8} R.E. Bryant, On the complexity of VLSI implementations of Boolean functions with applications to integer multiplication, IEEE Trans. Comput. 40 (1991) 205-213.]]
[9]
{9} J. Gergov, C. Meinel, Frontiers of feasible and probabilistic feasible Boolean manipulation with branching programs, in: Proc. 10th STACS, Lecture Notes in Computer Science, Vol. 665, Springer, Berlin, 1993, pp. 576-585.]]
[10]
{10} J. Gergov, C. Meinel, Mod-2-OBDDs--a data structure that generalizes exor-sum-of-products and ordered binary decision diagrams, Formal Methods System Design 8 (1996) 273-282.]]
[11]
{11} M. Homeister, On well-structured parity-FBDDs, in: Proc. Sixth Internat. Symp. on Representations and Methodology of Future Computing Technology, 2003.]]
[12]
{12} S. Jukna, Linear codes are hard for oblivious read-once parity branching programs, Inform. Process. Lett. 69 (1999) 267-269.]]
[13]
{13} S. Jukna, Combinatorics of Finite Computations--The Lower Bounds Problem, Habilitationsschrift, University of Trier, 1999.]]
[14]
{14} S. Jukna, The graph of integer multiplication is hard for read-k-times networks, Technical Report 95-10, University of Trier, 1995.]]
[15]
{15} E.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, Elsevier, Amsterdam, 1977.]]
[16]
{16} C. Meinel, H. Sack, Heuristics for ⊕-OBDDs, in: Proc. IEEE/ACM Internat. Workshop of Logic and Synthesis, 2001, pp. 304-309.]]
[17]
{17} C. Meinel, H. Sack, Improving XOR-node placements for ⊕-OBDDs, in: Proc. Fifth Internat. Workshop of Reed-Muller Expansion in Circuit Design, 2001, pp. 51-55.]]
[18]
{18} E.I. Necbiporuk, A Boolean function, Sov. Math. Dokl. 7 (1966) 999-1000.]]
[19]
{19} H. Sack, Improving the power of OBDDs by integrating parity nodes, Ph.D. Thesis, University of Trier, 2001.]]
[20]
{20} P. Savicý, D. Sieling, A hierarchy result for read-once Branching programs with restricted parity nondeterminism, Theoret. Comput. Sci. 340 (2005) 594-605.]]
[21]
{21} D. Sieling, Lower bounds for linear transformed OBDDs and FBDDs, in: Proc. FSTTCS, Lecture Notes in Computer Science, Vol. 1738, Springer, Berlin, 1999, pp. 356-368.]]
[22]
{22} D. Sieling, I. Wegener, Graph driven BDDs--a new data structure for Boolean functions, Theoret. Comput. Sci. 141 (1995) 238-310.]]
[23]
{23} S. Waack, On the descriptive and algorithmic power of parity ordered binary decision diagrams, Inform. and Comput. 166 (2001) 61-70.]]
[24]
{24} I. Wegener, Branching Programs and Binary Decision Diagrams--Theory and Applications, SIAM Monographs, SIAM, Philadelphia, PA, 2000.]]

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Theoretical Computer Science
Theoretical Computer Science  Volume 359, Issue 1
14 August 2006
461 pages

Publisher

Elsevier Science Publishers Ltd.

United Kingdom

Publication History

Published: 14 August 2006

Author Tags

  1. computational complexity
  2. lower bounds
  3. read-once parity branching programs

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media