[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Sextant

Published: 01 December 2015 Publication History

Abstract

The linked open data cloud is constantly evolving as datasets get continuously updated with newer versions. As a result, representing, querying, and visualizing the temporal dimension of linked data is crucial. This is especially important for geospatial datasets that form the backbone of large scale open data publication efforts in many sectors of the economy (e.g., the public sector, the Earth Observation sector). Although there has been some work on the representation and querying of linked geospatial data that change over time, to the best of our knowledge, there is currently no tool that offers spatio-temporal visualization of such data. This is in contrast with the existence of many tools for the visualization of the temporal evolution of geospatial data in the GIS area. In this article, we present Sextant, a Web-based system for the visualization and exploration of time-evolving linked geospatial data and the creation, sharing, and collaborative editing of "temporally-enriched" thematic maps which are produced by combining different sources of such data. We present the architecture of Sextant, give examples of its use and present applications in which we have deployed it.

References

[1]
M. Koubarakis, M. Karpathiotakis, K. Kyzirakos, C. Nikolaou, M. Sioutis, Data models and query languages for linked geospatial data, in: LNCS, vol. 7487, Springer, 2012, pp. 290-328.
[2]
S. Auer, J. Lehmann, S. Hellmann, LinkedGeoData: Adding a spatial dimension to the web of data, in: International Semantic Web Conference, 2009, pp. 731-746.
[3]
A.d. León, V. Saquicela, L.M. Vilches, B. Villazón-Terrazas, F. Priyatna, O. Corcho, Geographical linked data: a Spanish use case, in: I-Semantics, ACM, 2010.
[4]
M. Koubarakis, C. Kontoes, S. Manegold, M. Karpathiotakis, K. Kyzirakos, K. Bereta, G. Garbis, C. Nikolaou, D. Michail, I. Papoutsis, T. Herekakis, M. Ivanova, Y. Zhang, H. Pirk, M. Kersten, K. Dogani, S. Giannakopoulou, P. Smeros, Real-time wildfire monitoring using scientific database and linked data technologies, in: EDBT, 2013.
[5]
C. Kontoes, I. Keramitsoglou, I. Papoutsis, N.I. Sifakis, P. Xofis, National scale operational mapping of burnt areas as a tool for the better understanding of contemporary wildfire patterns and regimes, Sensors, 13 (2013) 11146-11166.
[6]
K. Kyzirakos, M. Karpathiotakis, M. Koubarakis, Strabon: A semantic geospatial DBMS, in: LNCS, vol. 7649, Springer, 2012, pp. 295-311.
[7]
K. Bereta, P. Smeros, M. Koubarakis, Representation and querying of valid time of triples in linked geospatial data, in: LNCS, vol. 7882, 2013, pp. 259-274.
[8]
Open Geospatial Consortium, OGC GeoSPARQL-A geographic query language for RDF data, OGC¿ ¿Implementation Standard, 2012. Available from: https://portal.opengeospatial.org/files/?artifact_id=47664.
[9]
BBN Technologies Inc., Parliament¿: A High-Performance Triple Store, SPARQL Endpoint, and Reasoner, 2009. URL: http://parliament.semwebcentral.org/.
[10]
Open Sahara, uSeekM library. URL: http://dev.opensahara.com/projects/useekm/.
[11]
G. Garbis, K. Kyzirakos, M. Koubarakis, Geographica: A benchmark for geospatial rdf stores (long version), in: International Semantic Web Conference (2), 2013, pp. 343-359.
[12]
Open Geospatial Consortium, OGC KML, OGC¿ ¿Implementation Standard, 2008. Available from: http://portal.opengeospatial.org/files/?artifact_id=27810.
[13]
C.O. Dumitru, S. Cui, D. Espinoza-Molina, A.M.M. de Oca, G. Schwarz, M. Datcu, C. members, An evaluation of the VO for TerraSAR-X data and applications, Deliverable D6.5, European FP7 project TELEIOS, 2013. Available from: http://www.earthobservatory.eu/deliverables/FP7-257662-TELEIOS-D6.5.pdf.
[14]
C.H. Kontoes, I. Papoutsis, D. Michail, T. Herekakis, C. members, An evaluation of the real-time fire monitoring application and the TELEIOS infrastructure, Deliverable D7.4, European FP7 project TELEIOS, 2013. Available from: http://www.earthobservatory.eu/deliverables/FP7-257662-TELEIOS-D7.4.pdf.
[15]
C. Nikolaou, K. Dogani, K. Kyzirakos, M. Koubarakis, Sextant: Browsing and mapping the ocean of linked geospatial data, in: ESWC, Satellite Events, 2013, pp. 209-213.
[16]
K. Bereta, C. Nikolaou, M. Karpathiotakis, K. Kyzirakos, M. Koubarakis, SexTant: Visualizing time-evolving linked geospatial data, in: International Semantic Web Conference, Posters & Demos, 2013, pp. 177-180.
[17]
The semantic web: Semantics and big data, in: Lecture Notes in Computer Science, vol. 7882, Springer, 2013.
[18]
The Semantic Web-ISWC 2013-12th International Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part I, in: Lecture Notes in Computer Science, vol. 8218, Springer, 2013.
[19]
The Semantic Web-ISWC 2013-12th International Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part II, in: Lecture Notes in Computer Science, vol. 8219, Springer, 2013.
[20]
N. Marie, F. Gandon, D. Legrand, M. Ribière, Exploratory search on the top of dbpedia chapters with the discovery hub application, in: ESWC, Satellite Events, 2013, pp. 184-188.
[21]
Open Geospatial Consortium. OpenGIS Implementation Standard for Geographic information-Simple feature access-Part 1: Common Architecture, OpenGIS Implementation Standard, 2010. Available from: http://portal.opengeospatial.org/files/?artifact_id=25355.
[22]
Open Geospatial Consortium. Geography Markup Language (GML) Encoding Standard, OpenGIS Implementation Standard, 2007. Available from: http://portal.opengeospatial.org/files/?artifact_id=20509.
[23]
L. Feigenbaum, G.T. Williams, K.G. Clark, E. Torres, SPARQL 1.1 Protocol, W3C Recommendation 21 March 2013. Available from: http://www.w3.org/TR/sparql11-protocol/.
[24]
D. Beckett, J. Broekstra, SPARQL Query Results XML Format (Second Edition), W3C Recommendation 21 March 2013. Available from: http://www.w3.org/TR/rdf-sparql-XMLres/.
[25]
A. Seaborne, SPARQL 1.1 Query Results JSON Format, W3C Recommendation 21 March 2013. Available from: http://www.w3.org/TR/sparql11-results-json/.
[26]
A. Seaborne, SPARQL 1.1 Query Results CSV and TSV Formats, W3C Recommendation 21 March 2013. Available from: http://www.w3.org/TR/sparql11-results-csv-tsv/.
[27]
J. Lieberman, R. Singh, C. Goad, W3C Geospatial Ontologies, W3C Incubator Group Report 23 October 2007. Available from: http://www.w3.org/2005/Incubator/geo/XGR-geo-ont/.
[28]
J. Lieberman, R. Singh, C. Goad, W3C Geospatial Vocabulary, W3C Incubator Group Report 23 October 2007. Available from: http://www.w3.org/2005/Incubator/geo/XGR-geo/.
[29]
J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM, 26 (1983) 832-843.
[30]
D. Beckett, T. Berners-Lee, Turtle-Terse RDF Triple Language, W3C Team Submission 28 March 2011. Available from: http://www.w3.org/TeamSubmission/turtle/.
[31]
C. Ogbuji, SPARQL 1.1 Graph Store HTTP Protocol, W3C Recommendation 21 March 2013. Available from: http://www.w3.org/TR/sparql11-http-rdf-update/.
[32]
A.d. León, F. Wisniewki, B. Villazón-Terrazas, O. Corcho, Map4rdf-Faceted Browser for Geospatial Datasets, PMOD workshop, 2012.
[33]
J.M.B. Fernéandez, S. Auer, R. Garcia, The linked data visualization model, in: International Semantic Web Conference, Posters & Demos, 2012.
[34]
I. Johnson, Putting time on the map: Using timemap for map animation and web delivery, Geoinformatica, 7 (2004) 26-29.
[35]
G.L. Andrienko, N.V. Andrienko, Interactive maps for visual data exploration, Int. J. Geogr. Inf. Sci., 13 (1999) 355-374.
[36]
G. Andrienko, N. Andrienko, H. Voss, et al. GIS for everyone: the CommonGIS project and beyond, Maps and the Internet, 2003, pp. 131-146.
[37]
T.A. Slocum, S.C. Yoder, F.C. Kessler, R.S. Sluter, Maptime: software for exploring spatiotemporal data associated with point locations, Cartogr.: Int. J. Geogr. Inf. Geovisualization, 37 (2000) 15-32.
[38]
W.L. Hibbard, B.E. Paul, D.A. Santek, C.R. Dyer, A.L. Battaiola, M.-F. Voidrot-Martinez, Interactive visualization of earth and space science computations, Computer, 27 (1994) 65-72.
[39]
N. Andrienko, G. Andrienko, P. Gatalsky, Exploratory spatio-temporal visualization: an analytical review, J. Vis. Lang. Comput., 14 (2003) 503-541.
[40]
A. Rula, M. Palmonari, A. Harth, S. Stadtmüller, A. Maurino, On the diversity and availability of temporal information in linked open data, in: ISWC, 2012.
[41]
U.D. Giammatteo, M. Sagona, S. Perelli, C. members, The TELEIOS software architecture Phase II, Deliverable D1.2.2, European FP7 project TELEIOS, 2012. Available from: http://www.earthobservatory.eu/deliverables/FP7-257662-TELEIOS-D1.2.2.pdf.
[42]
K. Kyzirakos, G. Garbis, C. Nikolaou, K. Bereta, S. Giannakopoulou, K. Dogani, P. Smeros, M. Koubarakis, M. Karpathiotakis, E. Klien, K. Kravaritis, S. Vassos, I. Smaragdakis, D. Bakogiannis, I. Foufoulas, C. members, The evaluation of the developed implementation, Deliverable D4.3, European FP7 project TELEIOS, 2013. Available from: http://www.earthobservatory.eu/deliverables/FP7-257662-TELEIOS-D4.3.pdf.
[43]
R. Cyganiak, D. Reynolds, The RDF Data Cube Vocabulary, W3C Recommendation 16 January 2014, retrieved February 16, 2015. from http://www.w3.org/TR/vocab-data-cube/.
[44]
R. Weibel, Generalization of spatial data: Principles and selected algorithms, in: Lecture Notes in Computer Science, vol. 1340, Springer, Berlin, Heidelberg, 1997, pp. 99-152.

Cited By

View all
  • (2024)European AI and EO convergence via a novel community-driven framework for data-intensive innovationFuture Generation Computer Systems10.1016/j.future.2024.06.013160:C(505-521)Online publication date: 1-Nov-2024
  • (2024)Publication of Satellite Earth Observations in the Linked Open Data Cloud: Experiment Through the TRACES ProjectWeb and Wireless Geographical Information Systems10.1007/978-3-031-60796-7_5(67-85)Online publication date: 18-Jun-2024
  • (2023)Fire Risk Management using Data Cubes, Machine Learning and OBDA systemsProceedings of the 31st ACM International Conference on Advances in Geographic Information Systems10.1145/3589132.3625615(1-4)Online publication date: 13-Nov-2023
  • Show More Cited By

Recommendations

Reviews

Salvatore F. Pileggi

Large data sets of linked geospatial data are progressively appearing on the web. It is a direct consequence of the intense research activity of recent years, which has consolidated concepts, models, and related technology. These data sets are increasing in number as well as in size, defining a trend that requires novel approaches and cutting-edge applications. Geospatial information rarely reflects a static reality, as most of the time it represents contexts and phenomena in their evolution. Therefore, the temporal dimension of data can play a crucial role in the context of many applications. This paper deals with the spatiotemporal analysis of linked data. Sextant, the tool described in the paper, allows the browsing and the visualization of time-evolving linked geospatial data in a context of interoperability and flexibility. The paper is interesting in all its parts. As a reader, I appreciate that the key concepts are introduced and clearly explained before going through technical details. Furthermore, the characteristics of the tool are clearly stated and future directions seem convincing. This is definitely an interesting contribution to the field. Online Computing Reviews Service

Access critical reviews of Computing literature here

Become a reviewer for Computing Reviews.

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Web Semantics: Science, Services and Agents on the World Wide Web
Web Semantics: Science, Services and Agents on the World Wide Web  Volume 35, Issue P1
December 2015
63 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 December 2015

Author Tags

  1. Browsing
  2. Exploration
  3. Linked geospatial data
  4. Linked spatiotemporal data
  5. Visualization

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)European AI and EO convergence via a novel community-driven framework for data-intensive innovationFuture Generation Computer Systems10.1016/j.future.2024.06.013160:C(505-521)Online publication date: 1-Nov-2024
  • (2024)Publication of Satellite Earth Observations in the Linked Open Data Cloud: Experiment Through the TRACES ProjectWeb and Wireless Geographical Information Systems10.1007/978-3-031-60796-7_5(67-85)Online publication date: 18-Jun-2024
  • (2023)Fire Risk Management using Data Cubes, Machine Learning and OBDA systemsProceedings of the 31st ACM International Conference on Advances in Geographic Information Systems10.1145/3589132.3625615(1-4)Online publication date: 13-Nov-2023
  • (2023)Geospatial Data ScienceundefinedOnline publication date: 9-Jun-2023
  • (2022)Knowledge explorerProceedings of the 30th International Conference on Advances in Geographic Information Systems10.1145/3557915.3561009(1-4)Online publication date: 1-Nov-2022
  • (2021)Consistency assessment for open geodata integration: an ontology-based approachGeoinformatica10.1007/s10707-019-00384-925:4(733-758)Online publication date: 1-Oct-2021
  • (2019)GeoSensorProceedings of the 34th ACM/SIGAPP Symposium on Applied Computing10.1145/3297280.3297504(2259-2266)Online publication date: 8-Apr-2019
  • (2018)OptiqueVQSSemantic Web10.3233/SW-1802939:5(627-660)Online publication date: 1-Jan-2018
  • (2018)A semantic data model for sensory spatio-temporal environmental conceptsProceedings of the 22nd Pan-Hellenic Conference on Informatics10.1145/3291533.3291571(180-185)Online publication date: 29-Nov-2018
  • (2018)From Copernicus Big Data to Big Information and Big KnowledgeProceedings of the 27th ACM International Conference on Information and Knowledge Management10.1145/3269206.3269232(1911-1914)Online publication date: 17-Oct-2018
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media