[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Visible light backscattering with applications to communication and localization in healthcare: : A survey

Published: 01 January 2022 Publication History

Abstract

Visible light backscatter (VLB) is an innovative passive transmission paradigm to enable ultra low-power communication and localization for the Internet of Things (IoT), overcoming some limitations of conventional active visible light communication (VLC) as well as active/passive radio-frequency (RF) systems. In this paper, we provide a survey of VLB-based techniques and briefly discuss their applications in healthcare applications. After describing the principles of operation and the main enabling technologies, we survey the existing VLB techniques according to several features, discussing their merits and limitations. Finally, we introduce some open challenges in this area, by delineating future research directions.

References

[1]
J.J.P. Rodrigues, S.S. Compte, I. de la Torra Diez, e-Health SystemsTheory, Advances and Technical Applications, Elservier, 2016.
[2]
P.H. Pathak, X. Feng, P. Hu, P. Mohapatra, Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges, IEEE Communications Surveys and Tutorials 17 (4) (2015) 2047–2077.
[3]
J. Luo, L. Fan, H. Li, Indoor positioning systems based on visible light communication: State of the art, IEEE Communications Surveys Tutorials 19 (4) (2017) 2871–2893.
[4]
M.F. Keskin, A.D. Sezer, S. Gezici, Localization via visible light systems, in: Proceedings of the IEEE, 106, 2018, pp. 1063–1088.
[5]
R. Want, An introduction to rfd technology, IEEE Pervasive Computing 5 (1) (2006) 25–33.
[6]
V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, J.R. Smith, Ambient backscatter: Wireless communication out of thin air, SIGCOMM Comput. Commun. Rev. 43 (4) (2013) 39–50.
[7]
A.N. Parks, A. Liu, S. Gollakota, J.R. Smith, Turbocharging ambient backscatter communication, SIGCOMM Comput, Commun. Rev. 44 (4) (2014) 619–630.
[8]
D. Darsena, G. Gelli, F. Verde, Modeling and performance analysis of wireless networks with ambient backscatter devices, IEEE Transactions on Communications 65 (4) (2017) 1797–1814.
[9]
D. Darsena, G. Gelli, F. Verde, Cloud-aided cognitive ambient backscatter wireless sensor networks, IEEE Access 7 (2019) 57399–57414.
[10]
S.U. Rehman, S. Ullah, P.H.J. Chong, S. Yongchareon, D. Komosny, Visible Light Communication: A System Perspective - Overview and Challenges, Sensors 19 (5) (2019).
[11]
A. Aljaberi, P.C. Sofotasios, S. Muhaidat, Modulation schemes for visible light communications, in: 2019 International Conference on Advanced Communication Technologies and Networking (CommNet), 2019, pp. 1–10.
[12]
L. Zhou, J. Kahn, K. Pister, Corner-cube retrorefectors based on structure-assisted assembly for free-space optical communication, Journal of Microelectromechanical Systems 12 (3) (2003) 233–242.
[13]
L.-T. Le, H.-T. Le, J. Lee, H.-Y. Ma, H.-Y. Lee, Design of a Society of Automotive Engineers Regular Curved Retrorefector for Enhancing Optical Efciency and Working Area, Crystals 8 (12) (2018).
[14]
S. Teramoto, T. Ohtsuki, Optical wireless sensor network system using corner cube retrorefectors (CCRs), in: IEEE Global Telecommunications Conference, 2, 2004, pp. 1035–1039. GLOBECOM ’04.Vol.2.
[15]
L Janik, M Novak, A Dobesch, L Hudcova, Retrorefective optical communication, in: 2017 Conference on Microwave Techniques (COMITE), 2017, pp. 1–4.
[16]
A.V. Arecchi, T. Messadi, R.J. Koshel, , Field Guide to Illumination, Society of Photo-Optical Instrumentation Engineers (SPIE), USA, 2007.
[17]
A. Carrasco-Casado, R. Vergaz, J.M. Sa´nchez-Pena, E. Oto´n, M.A. Geday, J.M. Ote´n, Low-impact air-to-ground free-space optical communication system design and frst results, in: 2011 International Conference on Space Optical Systems and Applications (ICSOS), 2011, pp. 109–112.
[18]
X. Xu, Y. Shen, J. Yang, C. Xu, G. Shen, G. Chen, Y. Ni, PassiveVLC: Enabling Practical Visible Light Backscatter Communication for Battery-Free IoT Applications, in: Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, MobiCom ’17, Association for Computing Machinery, New York, NY, USA, 2017, pp. 180–192.
[19]
J. Yun, B.-J. Jang, Ambient light backscatter communication for IoT applications, Journal of electromagnetic engineering and science 16 (4) (2016) 214–218.
[20]
J. Li, A. Liu, G. Shen, L. Li, C. Sun, F. Zhao, Retro-VLC: Enabling Battery-Free Duplex Visible Light Communication for Mobile and IoT Applications, in: Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, HotMobile ’15, Association for Computing Machinery, New York, NY, USA, 2015, pp. 21–26.
[21]
Z. Yang, Z. Wang, J. Zhang, C. Huang, Q. Zhang, Polarization-Based Visible Light Positioning, IEEE Transactions on Mobile Computing 18 (3) (2019) 715–727.
[22]
Y. Wu, P. Wang, K. Xu, L. Feng, C. Xu, Turboboosting Visible Light Backscatter Communication, in: Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM ’20, Association for Computing Machinery, New York, NY, USA, 2020, pp. 186–197.
[23]
P. Wang, Y. Wu, C. Xu, Poster: Polarization-Based QAM for Visible Light Backscatter Communication, in: The 25th Annual International Conference on Mobile Computing and Networking, MobiCom ’19, Association for Computing Machinery, New York, NY, USA, 2019.
[24]
Z. Yang, Z. Wang, J. Zhang, C. Huang, Q. Zhang, Wearables Can Aford: Light-Weight Indoor Positioning with Visible Light, in: Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys ’15, Association for Computing Machinery, New York, NY, USA, 2015, pp. 317–330.
[25]
J.-M. Kim, S.-H. Lee, D.-H. Jeon, S.-W. Lee, Physical model of pixels in twisted nematic active-matrix liquid crystal displays, IEEE Transactions on Electron Devices 62 (10) (2015) 3308–3313.
[26]
Q. Wang, M. Zuniga, D. Giustiniano, Passive Communication with Ambient Light, in: Proceedings of the 12th International on Conference on Emerging Networking EXperiments and Technologies, ACM, Irvine, California, 2016.
[27]
S. Shao, A. Khreishah, H. Elgala, Pixelated VLC-Backscattering for Self-Charging Indoor IoT Devices, IEEE Photonics Technology Letters 29 (2) (2017) 177–180. arXiv1605.00626.
[28]
Y. Wu, P. Wang, C. Xu, Demo: Improving Visible Light Backscatter Communication with Delayed Superimposition Modulation, in: The 25th Annual International Conference on Mobile Computing and Networking, MobiCom ’19, Association for Computing Machinery, New York, NY, USA, 2019.
[29]
P. Wang, L. Feng, G. Chen, C. Xu, Y. Wu, K. Xu, G. Shen, K. Du, G. Huang, X. Liu, Renovating road signs for infrastructure-to-vehicle networking: A visible light backscatter communication and networking approach, in: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, MobiCom ’20, Association for Computing Machinery, New York, NY, USA, 2020.
[30]
S. Shao, A. Khreishah, I. Khalil, RETRO: Retrorefector Based Visible Light Indoor Localization for Real-time Tracking of IoT Devices, in: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, 2018, pp. 1025–1033.
[31]
S. Shao, A. Khreishah, J. Paez, PassiveRETRO: Enabling Completely Passive Visible Light Localization for IoT Applications, in: Proceedings - IEEE INFOCOM 2019-April, 2019, pp. 1540–1548.
[32]
S. Shao, A. Khreishah, I. Khalil, Enabling real-time indoor tracking of IoT devices through visible light retrorefection, IEEE Transactions on Mobile Computing 19 (4) (2020) 836–851.
[33]
S. Muhammad, S.H.A. Qasid, S. Rehman, A.B.S. Rai, Visible light communication applications in healthcare, Technology and Health Care 24 (1) (2016) 135–138.
[34]
Y.K. Cheong, X.W. Ng, W.Y. Chung, Hazardless biomedical sensing data transmission using VLC, IEEE Sensors Journal 13 (9) (2013) 3347–3348.
[35]
T. Adiono, R.F. Armansyah, S.S. Nolika, F.D. Ikram, R.V.W. Putra, A.H. Salman, Visible light communication system for wearable patient monitoring device, in: 2016 IEEE Region 10 Conference (TENCON), 2016, pp. 1969–1972.
[36]
D.R. Dhatchayeny, S. Arya, Y.H. Chung, Patient mobility support for indoor non-directed optical body area networks, Sensors (Switzerland) 19 (10) (2019).
[37]
W. Noonpakdee, Indoor optical wireless communications employing corner cube retrorefector for health monitoring system, in: 2013 Fifth International Conference on Ubiquitous and Future Networks (ICUFN), 2013, pp. 674–678.
[38]
W. Noonpakdee, Performance analysis of passive — active optical wireless transmission for personal health monitoring, in: 2014 Sixth International Conference on Ubiquitous and Future Networks (ICUFN), 2014, pp. 17–21.
[39]
W. Noonpakdee, Hybrid passive-active optical wireless transmission for health monitoring system, Wireless Personal Communications 86 (4) (2016) 1899–1911.
[40]
X. Huang, F. Yang, C. Pan, J. Song, Flexible NOMA-based NOHO-OFDM scheme for visible light communication with iterative interference cancellation, Optics Express 29 (4) (2021) 5645–5657.
[41]
C.A. Valagiannopoulos, T.A. Tsiftsis, V. Kovanis, Metasurface-enabled interference mitigation in visible light communication architectures, Journal of Optics 21 (11) (2019).
[42]
G. Matta, R. Bahl, M. Agarwal, Capacity Analysis of Indoor Visible Light Communication Systems, in: 2019 Global LIFI Congress (GLC), 2019, pp. 1–4.
[43]
L. Jia, F. Shu, N. Huang, M. Chen, J. Wang, Capacity and Optimum Signal Constellations for VLC Systems, Journal of Lightwave Technology 38 (8) (2020) 2180–2189.
[44]
S. Ma, R. Yang, Y. He, S. Lu, F. Zhou, N. Al-Dhahir, S. Li, Achieving Channel Capacity of Visible Light Communication, IEEE Systems Journal 15 (2) (2021) 1652–1663.
[45]
H. Wang, Z. Zhang, B. Zhu, J. Dang, L. Wu, L. Wang, K. Zhang, Y. Zhang, Performance of Wireless Optical Communication With Reconfg-urable Intelligent Surfaces and Random Obstacles (2020). arXiv:2001.05715.
[46]
B. Cao, M. Chen, Z. Yang, M. Zhang, J. Zhao, M. Chen, Refecting the Light: Energy Efcient Visible Light Communication with Reconfg-urable Intelligent Surface, in: IEEE Vehicular Technology Conference 2020-November, 2020.
[47]
J. Liu, M. Liu, Y. Bai, J. Zhang, H. Liu, W. Zhu, Recent progress in fexible wearable sensors for vital sign monitoring, Sensors (Switzerland) 20 (14) (2020) 1–26.
[48]
A. Arbabi, E. Arbabi, Y. Horie, S.M. Kamali, A. Faraon, Planar metasurface retrorefector, Nature Photonics 11 (7) (2017) 415–420.
[49]
M. Sun, X. Xu, X.W. Sun, X. Liang, V. Valuckas, Y. Zheng, R. Paniagua-Dom´ınguez, A.I. Kuznetsov, Efcient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals, Scientifc Reports 9 (1) (2019) 1–9.
[50]
S.J. Kim, I. Kim, S. Choi, H. Yoon, C. Kim, Y. Lee, C. Choi, J. Son, Y.W. Lee, J. Rho, B. Lee, Reconfgurable all-dielectric Fano metasurfaces for strong full-space intensity modulation of visible light, Nanoscale Horizons 5 (7) (2020) 1088–1095.
[51]
R.A. Aoni, M. Rahmani, L. Xu, K. Zangeneh Kamali, A. Komar, J. Yan, D. Neshev, A.E. Miroshnichenko, High-Efciency Visible Light Manipulation Using Dielectric Metasurfaces, Scientifc Reports 9 (1) (2019) 1–9.
[52]
J. A. Dolan, H. Cai, L. Delalande, X. Li, A. B. Martinson, J. J. De Pablo, D. Lo´pez, P. F. Nealey, Broadband Liquid Crystal Tunable Meta-surfaces in the Visible: Liquid Crystal Inhomogeneities across the Metasurface Parameter Space, American Chemical Society Photonics 8 (2) (2021) 567–575.
[53]
A. R. Ndjiongue, T. M. N. Ngatched, O. A. Dobre, H. Haas, Towards the Use of Re-confgurable Intelligent Surfaces in VLC Systems: Beam Steering (2020). arXiv:2009.06822.

Index Terms

  1. Visible light backscattering with applications to communication and localization in healthcare: A survey
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Procedia Computer Science
          Procedia Computer Science  Volume 203, Issue C
          2022
          837 pages
          ISSN:1877-0509
          EISSN:1877-0509
          Issue’s Table of Contents

          Publisher

          Elsevier Science Publishers B. V.

          Netherlands

          Publication History

          Published: 01 January 2022

          Author Tags

          1. Backscatter
          2. battery-free devices
          3. e-Health
          4. healthcare
          5. Internet of Things
          6. metasurface
          7. passive communication
          8. retroreflector
          9. visible light communication
          10. wireless body area network

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 04 Jan 2025

          Other Metrics

          Citations

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media