[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Video summarization via minimum sparse reconstruction

Published: 01 February 2015 Publication History

Abstract

The rapid growth of video data demands both effective and efficient video summarization methods so that users are empowered to quickly browse and comprehend a large amount of video content. In this paper, we formulate the video summarization task with a novel minimum sparse reconstruction (MSR) problem. That is, the original video sequence can be best reconstructed with as few selected keyframes as possible. Different from the recently proposed convex relaxation based sparse dictionary selection method, our proposed method utilizes the true sparse constraint L0 norm, instead of the relaxed constraint L 2, 1 norm, such that keyframes are directly selected as a sparse dictionary that can well reconstruct all the video frames. An on-line version is further developed owing to the real-time efficiency of the proposed MSR principle. In addition, a percentage of reconstruction (POR) criterion is proposed to intuitively guide users in obtaining a summary with an appropriate length. Experimental results on two benchmark datasets with various types of videos demonstrate that the proposed methods outperform the state of the art. HighlightsA minimum sparse reconstruction (MSR) based video summarization (VS) model is constructed.An L0 norm based constraint is imposed to ensure real sparsity.Two efficient and effective MSR based VS algorithms are proposed for off-line and on-line applications, respectively.A scalable strategy is designed to provide flexibility for practical applications.

References

[1]
Youtube Statistics, {http://www.youtube.com/t/press_statistics}, 2014.
[2]
B.T. Truong, S. Venkatesh, Video abstraction, ACM Trans. Multimed. Comput. Commun. Appl., 3 (2007) 3.
[3]
A. Money, H. Agius, Video summarisation, J. Vis. Commun. Image Represent., 19 (2008) 121-143.
[4]
J. Luo, C. Papin, K. Costello, Towards extracting semantically meaningful key frames from personal video clips, IEEE Trans. Circuits Syst. Video Technol., 19 (2009) 289-301.
[5]
A. Hanjalic, H. Zhang, An integrated scheme for automated video abstraction based on unsupervised cluster-validity analysis, IEEE Trans. Circuits Syst. Video Technol., 9 (1999) 1280-1289.
[6]
R. Brunelli, O. Mich, C.-M. Modena, A survey on the automatic indexing of video data, J. Vis. Commun. Image Represent., 10 (1999) 78-112.
[7]
U. Gargi, R. Kasturi, S.H. Strayer, Performance characterization of video-shot-change detection methods, IEEE Trans. Circuits Syst. Video Technol., 10 (2000) 1-13.
[8]
J. Vermaak, P.Pérez, M. Gangnet, A. Blake, Rapid summarisation and browsing of video sequences, in: British Machine Vision Conference, 2002, pp. 1-10.
[9]
Y. Zhuang, Y. Rui, T.S. Huang, S. Mehrotra, Adaptive key frame extraction using unsupervised clustering, in: Proceedings of the International Conference on Image Processing, vol. 1, IEEE, 1998, Chicago, Illinois, USA, pp. 866-870.
[10]
P. Mundur, Y. Rao, Y. Yesha, Keyframe-based video summarization using Delaunay clustering, Int. J. Digit. Libr., 6 (2006) 219-232.
[11]
B.-W. Chen, J.-C. Wang, J.-F. Wang, A novel video summarization based on mining the story-structure and semantic relations among concept entities, IEEE Trans. Multimed., 11 (2009) 295-312.
[12]
M. Furini, F. Geraci, M. Montangero, M. Pellegrini, Stimo, Multimed. Tools Appl., 46 (2010) 47-69.
[13]
Y. Cong, J. Yuan, J. Luo, Towards scalable summarization of consumer videos via sparse dictionary selection, IEEE Trans. Multimed., 14 (2012) 66-75.
[14]
L. Ballan, M. Bertini, A. Del Bimbo, L. Seidenari, G. Serra, Event detection and recognition for semantic annotation of video, Multimed. Tools Appl., 51 (2011) 279-302.
[15]
Z. Lu, K. Grauman, Story-driven summarization for egocentric video, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Portland, Oregon, USA, 2013, pp. 2714-2721.
[16]
M. Wang, R. Hong, G. Li, Z.-J. Zha, S. Yan, T.-S. Chua, Event driven web video summarization by tag localization and key-shot identification, IEEE Trans. Multimed., 14 (2012) 975-985.
[17]
F. Chen, C. De Vleeschouwer, A. Cavallaro, Resource allocation for personalized video summarization, IEEE Trans. Multimed., 16 (2014) 455-469.
[18]
Y.T.A. Nagasaka, Automatic video indexing and full-video search for object appearances, in: Second Working Conference on Visual Database Systems, 1991, pp. 119-133.
[19]
B. Shahraray, D.C. Gibbon, Automatic generation of pictorial transcripts of video programs, in: Proc. SPIE, vol. 2417, 1995, pp. 512-518.
[20]
C. Panagiotakis, A. Doulamis, G. Tziritas, Equivalent key frames selection based on iso-content principles, IEEE Trans. Circuits Syst. Video Technol., 19 (2009) 447-451.
[21]
M.M. Yeung, B. Liu, Efficient matching and clustering of video shots, in: International Conference on Image Processing, vol. 1, IEEE, Washington, D.C., USA, 1995, pp. 338-341.
[22]
H.J. Zhang, J. Wu, D. Zhong, S.W. Smoliar, An integrated system for content-based video retrieval and browsing, Pattern Recognit., 30 (1997) 643-658.
[23]
X.-D. Zhang, T.-Y. Liu, K.-T. Lo, J. Feng, Dynamic selection and effective compression of key frames for video abstraction, Pattern Recognit. Lett., 24 (2003) 1523-1532.
[24]
C. Kim, J.-N. Hwang, Object-based video abstraction for video surveillance systems, IEEE Trans. Circuits Syst. Video Technol., 12 (2002) 1128-1138.
[25]
X. Sun, M.S. Kankanhalli, Video summarization using R-sequences, Real-Time Imaging, 6 (2000) 449-459.
[26]
H.-C. Lee, S.-D. Kim, Iterative key frame selection in the rate-constraint environment, Signal Process.: Image Commun., 18 (2003) 1-15.
[27]
T. Liu, X. Zhang, J. Feng, K.-T. Lo, Shot reconstruction degree, Pattern Recognit. Lett., 25 (2004) 1451-1457.
[28]
D. DeMenthon, V. Kobla, D. Doermann, Video summarization by curve simplification, in: Proceedings of the Sixth ACM International Conference on Multimedia, ACM, Bristol, United Kingdom, Bristol, United Kingdom, 1998, pp. 211-218.
[29]
L.J. Latecki, D. de Wildt, J. Hu, Extraction of key frames from videos by optimal color composition matching and polygon simplification, in: IEEE Fourth Workshop on Multimedia Signal Processing, IEEE, Cannes, France, 2001, pp. 245-250.
[30]
Y.-F. Ma, X.-S. Hua, L. Lu, H.-J. Zhang, A generic framework of user attention model and its application in video summarization, IEEE Trans. Multimed., 7 (2005) 907-919.
[31]
J. Luo, C. Papin, K. Costello, Towards extracting semantically meaningful key frames from personal video clips, IEEE Trans. Circuits Syst. Video Technol., 19 (2009) 289-301.
[32]
S.E.F. de Avila, A.P.B. Lopes, Vsumm, Pattern Recognit. Lett., 32 (2011) 56-68.
[33]
C.-W. Ngo, Y.-F. Ma, H.-J. Zhang, Video summarization and scene detection by graph modeling, IEEE Trans. Circuits Syst. Video Technol., 15 (2005) 296-305.
[34]
H.S. Chang, S. Sull, S.U. Lee, Efficient video indexing scheme for content-based retrieval, IEEE Trans. Circuits Syst. Video Technol., 9 (1999) 1269-1279.
[35]
A.D. Doulamis, N.D. Doulamis, S.D. Kollias, A fuzzy video content representation for video summarization and content-based retrieval, Signal Process., 80 (2000) 1049-1067.
[36]
Y. Gong, X. Liu, Video summarization using singular value decomposition, in: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, IEEE, Hilton Head Island, SC, USA, 2000, pp. 174-180.
[37]
Z. Li, G.M. Schuster, A.K. Katsaggelos, Minmax optimal video summarization, IEEE Trans. Circuits Syst. Video Technol., 15 (2005) 1245-1256.
[38]
J. Wu, H.I. Christensen, J.M. Rehg, Visual place categorization: problem, dataset, and algorithm, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, St. Louis, MO, USA, 2009, pp. 4763-4770.
[39]
J. Wu, J.M. Rehg, Centrist, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011) 1489-1501.
[40]
G. Guan, Z. Wang, S. Lu, J. Da Deng, D. Feng, Keypoint based keyframe selection, IEEE Trans. Circuits Syst. Video Technol., 23 (2013) 729-734.
[41]
Open Video Project, {http://www.open-video.org/}, 2011.
[42]
D. Deng, Content-based image collection summarization and comparison using self-organizing maps, Pattern Recognit., 40 (2007) 718-727.
[43]
C. Yang, J. Shen, J. Peng, J. Fan, Image collection summarization via dictionary learning for sparse representation, Pattern Recognit., 46 (2013) 948-961.

Cited By

View all
  • (2024)A Parallel Transformer Framework for Video Moment RetrievalProceedings of the 2024 International Conference on Multimedia Retrieval10.1145/3652583.3658096(460-468)Online publication date: 30-May-2024
  • (2024)A GAN based Video Summarization Method with Representation LossProceedings of the 2024 International Conference on Multimedia Retrieval10.1145/3652583.3657621(1155-1159)Online publication date: 30-May-2024
  • (2024)A novel approach for long-term secure storage of domain independent videosJournal of Visual Communication and Image Representation10.1016/j.jvcir.2024.104279104:COnline publication date: 1-Oct-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Pattern Recognition
Pattern Recognition  Volume 48, Issue 2
February 2015
325 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 01 February 2015

Author Tags

  1. Dictionary selection
  2. Keyframe extraction
  3. Sparse reconstruction
  4. Video summarization

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A Parallel Transformer Framework for Video Moment RetrievalProceedings of the 2024 International Conference on Multimedia Retrieval10.1145/3652583.3658096(460-468)Online publication date: 30-May-2024
  • (2024)A GAN based Video Summarization Method with Representation LossProceedings of the 2024 International Conference on Multimedia Retrieval10.1145/3652583.3657621(1155-1159)Online publication date: 30-May-2024
  • (2024)A novel approach for long-term secure storage of domain independent videosJournal of Visual Communication and Image Representation10.1016/j.jvcir.2024.104279104:COnline publication date: 1-Oct-2024
  • (2024)Property Constrained Video Summarization via Regret MinimizationSN Computer Science10.1007/s42979-023-02588-15:2Online publication date: 9-Feb-2024
  • (2023)Towards Smart Education through Internet of Things: A SurveyACM Computing Surveys10.1145/361040156:2(1-33)Online publication date: 21-Jul-2023
  • (2023)Deep Unsupervised Key Frame Extraction for Efficient Video ClassificationACM Transactions on Multimedia Computing, Communications, and Applications10.1145/357173519:3(1-17)Online publication date: 25-Feb-2023
  • (2023)Video Summarization With Spatiotemporal Vision TransformerIEEE Transactions on Image Processing10.1109/TIP.2023.327506932(3013-3026)Online publication date: 1-Jan-2023
  • (2023)Egocentric video co-summarization using transfer learning and refined random walk on a constrained graphPattern Recognition10.1016/j.patcog.2022.109128134:COnline publication date: 1-Feb-2023
  • (2023)Multi-scale deep feature fusion based sparse dictionary selection for video summarizationImage Communication10.1016/j.image.2023.117006118:COnline publication date: 1-Oct-2023
  • (2023)A review on video summarization techniquesEngineering Applications of Artificial Intelligence10.1016/j.engappai.2022.105667118:COnline publication date: 1-Feb-2023
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media