[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Evolution of superpeer topologies An analytical perspective

Published: 01 September 2017 Publication History

Abstract

In superpeer based networks, resourceful peers (having high bandwidth and computational resources) are discovered through the process of bootstrapping, whereby they get upgraded to superpeers. However, bootstrapping is influenced by several factors like limitation on the maximum number of connections a peer can have due to bandwidth constraints, limitation on the availability of information of existing peers due to cache size constraints and also by the attachment policy of the newly arriving peers to the resourceful peers. In this paper, we derive closed form equations that model the effect of these factors on superpeer related topological properties of the networks. Based on the model, we show that existing bootstrapping protocols can lead to a situation where only a small fraction of the resourceful peers gets converted to superpeers, i.e., a large fraction of them remain underutilized; we later validate this statement using real Gnutella snapshots. We observe that as a node attachment policy, newly arriving peers must use a combination of random and preferential attachment strategy so as to ensure proper utilization of the resourceful peers. We also show that the cache parameters must also be suitably tuned so as to increase the fraction of superpeers in the network. Finally, we show that in real Gnutella networks the degree distribution generated using our models suitably fits the corresponding empirical values.

References

[1]
S. Buchegger, D. Schiberg, L.-H. Vu, A. Datta, PeerSoN: p2p social networking: Early experiences and insights, in: SNS09, ACM, New York, NY, USA, 2009, pp. 46-52.
[2]
H. Shen, Z. Li, K. Chen, Social-p2p: An online social network based p2p file sharing system, IEEE Trans. Parallel Distrib. Syst., 26 (2015) 2874-2889.
[3]
F.A. Silva, A. Boukerche, T.R.M.B. Silva, L.B. Ruiz, E. Cerqueira, A.A.F. Loureiro, Vehicular networks: A new challenge for content-delivery-based applications, ACM Comput. Surv., 49 (2016) 11:1-11:29.
[4]
A.T. Liem, I.S. Hwang, A. Nikoukar, C.Z. Yang, M.S. Ab-Rahman, C.H. Lu, P2P live-streaming application-aware architecture for QoS enhancement in the EPON, IEEE Syst. J., PP (2016) 1-11.
[5]
H. Guclu, M. Yuksel, Scale-free overlay topologies with hard cutoffs for unstructured peer-to-peer networks, in: Proceedings of 27th IEEE International Conference on Distributed Computing Systems, ICDCS, 2007, pp. 32.
[6]
E. Bulut, B.K. Szymanski, Constructing limited scale-free topologies over peer-to-peer networks, IEEE Trans. Parallel Distrib. Syst., 25 (2014) 919-928.
[7]
P. Kirk, Gnutella - a protocol for a revolution, 2003. http://rfc-gnutella.sourceforge.net/.
[8]
G. Jesi, A. Montresor, O. Babaoglu, Proximity-Aware superpeer overlay topologies, IEEE Trans. Netw. Serv. Manag., 4 (2007) 74-83.
[9]
B. Yang, H. Garcia-Molina, Designing a super-peer network, in: ICDE03, 2003, pp. 49-60.
[10]
N.-M. Balouchzahi, M. Fathy, A. Akbari, An efficient infrastructure based service discovery in vehicular networks using P2P structures, J. Supercomput., 72 (2016) 1013-1034.
[11]
A. Qureshi, D. Megias, H. Rifa-Pous, PSUM: Peer-to-peer multimedia content distribution using collusion-resistant fingerprinting, J. Netw. Comput. Appl., 66 (2016) 180-197.
[12]
J. Chandra, B. Mitra, N. Ganguly, Effect of constraints on superpeer topologies, in: INFOCOM13, 2013, pp. 60-64.
[13]
H. Fushing, C. Chen, S.-Y. Liu, P. Koehl, Bootstrapping on undirected binary networks via statistical mechanics, J. Stat. Phys., 156 (2014) 823-842.
[14]
H. Papadakis, P. Fragopoulou, E. Markatos, M. Roussopoulos, ITA: Innocuous topology awareness for unstructured P2P networks, IEEE Trans. Parallel Distrib. Syst., 24 (2013) 1589-1601.
[15]
C. GauthierDickey, C. Grothoff, Bootstrapping of peer-to-peer networks, in: IEEE Proceedings of DAS-P2P, LNCS, Springer, Berlin, 2008.
[16]
P. Karbhari, M. Ammar, A. Dhamdhere, H. Raj, G. Riley, E. Zegura, Bootstrapping in Gnutella: A measurement study, in: PAM04, April, 2004.
[17]
G. Pandurangan, P. Raghavan, E. Upfal, Building low-diameter p2p networks, in: FOCS01, 2001, pp. 492-499.
[18]
M. Srivatsa, B. Gedik, L. Liu, Large scaling unstructured peer-to-peer networks with heterogeneity-aware topology and routing, IEEE Trans. Parallel Distrib. Syst., 17 (2006) 1277-1293.
[19]
M. Conrad, H.-J. Hof, A generic, self-organizing, and distributed bootstrap service for peer-to-peer networks, in: IWSOS07, 2007, pp. 59-72.
[20]
M. Jelasity, A. Montresor, O. Babaoglu, T-Man: Gossip-based fast overlay topology construction, Comput. Netw., 53 (2009) 2321-2339.
[21]
R.H. Wouhaybi, A.T. Campbell, Phenix: Supporting resilient low-diameter peer-to-peer topologies, in: INFOCOM04, vol. 1, 2004, pp. 119.
[22]
Y.J. Pyun, D.S. Reeves, Constructing a balanced,(log (n)/1oglog (n))-diameter super-peer topology for scalable p2p systems, in: P2P04, 2004, pp. 210-218.
[23]
T. Moscibroda, S. Schmid, R. Wattenhofer, On the Topologies Formed by Selfish Peers, in: IPTPS06, 2006.
[24]
K.-W. Kwong, D.H.K. Tsang, Building heterogeneous peer-to-peer networks: Protocol and analysis, IEEE/ACM Trans. Netw., 16 (2008) 281-292.
[25]
J.H. Paik, D.H. Lee, Scalable signaling protocol for web real-time communication based on a distributed hash table, Comput. Commun., 70 (2015) 28-39.
[26]
M. Medo, G. Cimini, S. Gualdi, Temporal effects in the growth of networks, Phys. Rev. Lett., 107 (2011) 238701.
[27]
G. Bianconi, Emergence of weight-topology correlations in complex scale-free networks, Europhys. Lett., 71 (2005) 1029-1035.
[28]
A. Barabsi, R. Albert, Emergence of scaling in random networks, Science, 286 (1999) 509-512.
[29]
P.L. Krapivsky, S. Redner, Organization of growing random networks, Phys. Rev. E, 63 (2001) 066123-106612314.
[30]
G. Bianconi, A.L. Barabasi, Competition and multiscaling in evolving networks, Europhys. Lett., 54 (2001) 436-442.
[31]
S.N. Dorogovtsev, J.F.F. Mendes, Evolution of networks with aging of sites, Phys. Rev. E, 62 (2000) 1842-1845.
[32]
M.D. Knig, C.J. Tessone, Network evolution based on centrality, Phys. Rev. E, 84 (2011).
[33]
H. Li, H. Zhao, W. Cai, J.-Q. Xu, J. Ai, A modular attachment mechanism for software network evolution, Physica A, 392 (2013) 2025-2037.
[34]
K. Lewis, M. Gonzalez, J. Kaufman, Social selection and peer influence in an online social network, Proc. Natl. Acad. Sci., 109 (2012) 68-72.
[35]
L.V. Chewning, B. Montemurro, The structure of support: Mapping network evolution in an online support group, Comput. Hum. Behav., 64 (2016) 355-365.
[36]
M. Fire, C. Guestrin, Analyzing complex network user arrival patterns and their effect on network topologies, CoRR (2016). http://arxiv.org/abs/1603.07445
[37]
X. Lu, E. Bulut, B. Szymanski, Towards limited scale-free topology with dynamic peer participation, Comput. Netw., 106 (2016) 109-121.
[38]
F. Radicchi, Underestimating extreme events in power-law behavior due to machine-dependent cutoffs, 2014. ArXiv e-prints, arXiv:1405.0058.
[39]
C. Fu, X. Wang, Network growth under the constraint of synchronization stability, Phys. Rev. E, 83 (2011).
[40]
A. Bharambe, C. Herley, V. Padmanabhan, Analyzing and improving a bittorrent networks performance mechanisms, in: INFOCOM06, 2006, pp. 1-12.
[41]
L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, X. Zhang, Measurements, analysis, and modeling of bittorrent-like systems, in: IMC 05, USENIX Association, Berkeley, CA, USA, 2005.
[42]
S. Ghosh, G. Korlam, N. Ganguly, The effects of restrictions on number of connections in osns: A case-study on twitter, in: WOSN10, USENIX Association, Berkeley, CA, USA, 2010.
[43]
S. Ghosh, A. Srivastava, N. Ganguly, Assessing the effects of a soft cut-off in the twitter social network, in: NETWORKING11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 288-300.
[44]
B. Mitra, F. Peruani, S. Ghose, N. Ganguly, Analyzing the vulnerability of superpeer networks against attack, in: CCS07, 2007.
[45]
M. Ripeanu, Peer-to-peer architecture case study: Gnutella network, in: P2P01, 2001, pp. 99-100.
[46]
B. Mitra, A.K. Dubey, S. Ghose, N. Ganguly, How do superpeer networks emerge?, in: INFOCOM10, 2010, pp. 1514-1522.
[47]
J. Chandra, Topology and its Effects on the Performance of Peer-to-Peer Networks, Indian Institute of Technology, Kharagpur, India, 2012.
[48]
C. GauthierDickey, C. Grothoff, Bootstrapping of peer-to-peer networks, in: Proceedings of IEEE/IPSJ 12th International Symposium on Applications and the Internet, 2008, pp. 205-208.
[49]
M. Knoll, A. Wacker, G. Schiele, T. Weis, Bootstrapping in peer-to-peer systems, in: ICPADS08, 2008, pp. 271-278.
[50]
D. Ilie, D. Erman, A. Popescu, A.A. Nilsson, Measurement and analysis of gnutella signaling, in: IPSI04, 2004.
[51]
R. Albert, A. Barabsi, Topology of evolving networks: Local events and universality, Phys. Rev. Lett., 85 (2000) 5234.
[52]
H. Kwak, C. Lee, H. Park, S. Moon, What is twitter, a social network or a news media? - www10, 2010. http://an.kaist.ac.kr/traces/www2010.html.
[53]
MPI-SWS, Social computing/online social networks research @ MPI-SWS, 2014. http://socialnetworks.mpi-sws.org/.
[54]
B. Viswanath, A. Mislove, M. Cha, K.P. Gummadi, On the evolution of user interaction in facebook, in: WOSN09, 2009.
  1. Evolution of superpeer topologies An analytical perspective

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Pervasive and Mobile Computing
    Pervasive and Mobile Computing  Volume 40, Issue C
    September 2017
    723 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 01 September 2017

    Author Tags

    1. Bootstrapping protocols
    2. Degree distribution
    3. Preferential attachment
    4. Rate equation
    5. Superpeer networks
    6. Webcache

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 01 Jan 2025

    Other Metrics

    Citations

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media