[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

IOTSim

Published: 01 January 2017 Publication History

Abstract

IOTSim largely extended Cloudsim's functionality to support for modelling and simulation of multiple IoT applications running simultaneously in a shared cloud data centres.IOTSim is capable of simulating batch-oriented IoT applications by using MapReduce model with a high degree of accuracy.IOTSim provides better perspective to analyse IoT-based applications using MapReduce model in Cloud Computing environment with less cost and time. A disruptive technology that is influencing not only computing paradigm but every other business is the rise of big data. Internet of Things (IoT) applications are considered to be a major source of big data. Such IoT applications are in general supported through clouds where data is stored and processed by big data processing systems. In order to improve the efficiency of cloud infrastructure so that they can efficiently support IoT big data applications, it is important to understand how these applications and the corresponding big data processing systems will perform in cloud computing environments. However, given the scalability and complex requirements of big data processing systems, an empirical evaluation on actual cloud infrastructure can hinder the development of timely and cost effective IoT solutions. Therefore, a simulator supporting IoT applications in cloud environment is highly demanded, but such work is still in its infancy. To fill this gap, we have designed and implemented IOTSim which supports and enables simulation of IoT big data processing using MapReduce model in cloud computing environment. A real case study validates the efficacy of the simulator.

References

[1]
B.T. Rao, L.S.S. Reddy, Survey on improved scheduling in Hadoop mapreduce in cloud environments, Int. J. Comput. Appl., 34 (2012) 29-33.
[2]
Y. Kouki, T. Ledoux, SLA-driven capacity planning for cloud applications, in: Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th International Conference on, 2012, pp. 135-140.
[3]
R.H. Weber, R. Weber, Internet of Things, Springer, 2010.
[4]
X. Wu, X. Zhu, G.-Q. Wu, W. Ding, Data mining with big data, Knowl. Data Eng. IEEE Trans., 26 (2014) 97-107.
[5]
W. Fan, A. Bifet, Mining big data: current status, and forecast to the future, ACM SIGKDD Explor. Newslett., 14 (2013) 1-5.
[6]
Z. Deng, X. Wu, L. Wang, X. Chen, A. Zomaya, D. Chen, Parallel processing of dynamic continuous queries over streaming data flows, Parallel Distrib. Syst. IEEE Trans., 26 (2015) 834-846.
[7]
C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Sensing as a service model for smart cities supported by internet of things, Trans. Emerg. Telecommun. Technol., 25 (2014) 81-93.
[8]
C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Context aware computing for the internet of things: a survey, Commun. Surv. Tut. IEEE, 16 (2014) 414-454.
[9]
C. Perera, A. Zaslavsky, P. Christen, Sensing as a service model for smart cities supported by internet of things{J}, Trans. Emerg. Telecommun. Technol., 25 (2014) 81-93.
[10]
L. Wang, R. Ranjan, J. Chen, B. Benatallah, Cloud Computing: Methodology, Systems, and Applications, CRC Press, 2011.
[11]
L. Wang, G. Von Laszewski, A. Younge, X. He, M. Kunze, J. Tao, Cloud computing: a perspective study, New Gen. Comput., 28 (2010) 137-146.
[12]
L. Wang, C. Fu, Research advances in modern cyberinfrastructure, New Gen. Comput., 28 (2010) 111-112.
[13]
L. Wang, D. Chen, Y. Hu, Y. Ma, J. Wang, Towards enabling cyberinfrastructure as a service in clouds, Comput. Elect. Eng., 39 (2013) 3-14.
[14]
D. Abadi, R. Agrawal, A. Ailamaki, M. Balazinska, P.A. Bernstein, M.J. Carey, The beckman report on database research, ACM SIGMOD Rec., 43 (2014) 61-70.
[15]
R. Zhang, R. Jain, P. Sarkar, L. Rupprecht, Getting your big data priorities straight: a demonstration of priority-based QoS using social-network-driven stock recommendation, in: Proceedings of the VLDB endowment, 7, 2014.
[16]
D. Chen, Z. Liu, L. Wang, M. Dou, J. Chen, H. Li, Natural disaster monitoring with wireless sensor networks: a case study of data-intensive applications upon low-cost scalable systems, Mobile Netw. Appl., 18 (2013) 651-663.
[17]
A. Bashar, Modeling and simulation frameworks for cloud computing environment: a critical evaluation, in: International Conference on Cloud Computing and Services Science, 2014, pp. 1-6.
[18]
L. Atzori, A. Iera, G. Morabito, The internet of things: a survey, Comput. Netw., 54 (2010) 2787-2805.
[19]
Q. Xiaocong, Z. Jidong, Study on the structure of Internet of Things (IOT) business operation support platform, in: Communication Technology (ICCT), 2010 12th IEEE International Conference on, 2010, pp. 1068-1071.
[20]
M. Aazam, I. Khan, A.A. Alsaffar, E.-N. Huh, Cloud of things: integrating Internet of Things and cloud computing and the issues involved, in: Applied Sciences and Technology (IBCAST), 2014 11th International Bhurban Conference on, 2014, pp. 414-419.
[21]
D. Georgakopoulos, P.P. Jayaraman, M. Zhang, R. Ranjan, Discovery-driven service oriented IoT architecture, in: 2015 IEEE Conference on Collaboration and Internet Computing (CIC), 2015, pp. 142-149.
[22]
D. Uckelmann, M. Harrison, F. Michahelles, Architecting the internet of things, Springer Science & Business Media, 2011.
[23]
R. Khan, S.U. Khan, R. Zaheer, S. Khan, Future internet: the Internet of Things architecture, possible applications and key challenges, in: Frontiers of Information Technology (FIT), 2012 10th International Conference on, 2012, pp. 257-260.
[24]
X. Zeng, P. Strazdins, S.K. Garg, L. Wang, Cross-layer SLA management for cloud-hosted big data analytics applications, in: Cluster, Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM International Symposium on, 2015, pp. 765-768.
[25]
B.S. Kim, S.J. Lee, T.G. Kim, H.S. Song, MapReduce based experimental frame for parallel and distributed simulation using Hadoop Platform, in: European Conference Modeling Simulation, 2014, pp. 664-669.
[26]
P. Mundkur, V. Tuulos, J. Flatow, Disco: a computing platform for large-scale data analytics, in: Proceedings of the 10th ACM SIGPLAN workshop on Erlang, 2011, pp. 84-89.
[27]
B. He, W. Fang, Q. Luo, N.K. Govindaraju, T. Wang, Mars: a MapReduce framework on graphics processors, in: Proceedings of the 17th international conference on Parallel architectures and compilation techniques, 2008, pp. 260-269.
[28]
K. Taura, K. Kaneda, T. Endo, A. Yonezawa, Phoenix: a parallel programming model for accommodating dynamically joining/leaving resources, ACM SIGPLAN Notices, 38 (2003) 216-229.
[29]
D. Agrawal, S. Das, A. El Abbadi, Big data and cloud computing, in: Proceedings of the 14th International Conference on Extending Database Technology - EDBT/ICDT '11, 443, 2011, pp. 530.
[30]
R. Lmmel, Google's MapReduce programming modelrevisited, Sci. Comput. Program., 70 (2008) 1-30.
[31]
R. Buyya, M. Murshed, Gridsim: a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing, Concurren. Comput., 14 (2002) 1175-1220.
[32]
H.J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, The microgrid: a scientific tool for modeling computational grids, in: Supercomputing, ACM/IEEE 2000 Conference, 2000, pp. 53.
[33]
C.L. Dumitrescu, I. Foster, GangSim: a simulator for grid scheduling studies, in: Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE International Symposium on, 2005, pp. 1151-1158.
[34]
H. Casanova, Simgrid: A toolkit for the simulation of application scheduling, in: Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM International Symposium on, 2001, pp. 430-437.
[35]
W.H. Bell, D.G. Cameron, L. Capozza, A.P. Millar, K. Stockinger, F. Zini, Simulation of dynamic grid replication strategies in optorsim, Springer, 2002.
[36]
P. Garca, C. Pairot, R. Mondjar, J. Pujol, H. Tejedor, R. Rallo, Planetsim: A New Overlay Network Simulation Framework, Springer, 2005.
[37]
R. Ranjan, A. Harwood, R. Buyya, Coordinated load management in Peer-to-Peer coupled federated grid systems, J. Supercomput., 61 (2012) 292-316.
[38]
D. Kliazovich, P. Bouvry, S.U. Khan, GreenCloud: a packet-level simulator of energy-aware cloud computing data centers, J. Supercomput., 62 (2012) 1263-1283.
[39]
A. Nez, J.L. Vzquez-Poletti, A.C. Caminero, G.G. Casta, J. Carretero, I.M. Llorente, iCanCloud: a flexible and scalable cloud infrastructure simulator, J. Grid Comput., 10 (2012) 185-209.
[40]
R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A. De Rose, R. Buyya, CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms, Software, 41 (2011) 23-50.
[41]
B. Wickremasinghe, R.N. Calheiros, R. Buyya, Cloudanalyst: a cloudsim-based visual modeller for analysing cloud computing environments and applications, in: Advanced Information Networking and Applications (AINA), 2010 24th IEEE International Conference on, 2010, pp. 446-452.
[42]
S.K. Garg, R. Buyya, Networkcloudsim: Modelling parallel applications in cloud simulations, in: Utility and Cloud Computing (UCC), 2011 Fourth IEEE International Conference on, 2011, pp. 105-113.
[43]
R.N. Calheiros, M.A. Netto, C.A. De Rose, R. Buyya, EMUSIM: an integrated emulation and simulation environment for modeling, evaluation, and validation of performance of cloud computing applications, Software, 43 (2013) 595-612.
[44]
S.-H. Lim, B. Sharma, G. Nam, E.K. Kim, C.R. Das, MDCSim: a multi-tier data center simulation, platform, in: Cluster Computing and Workshops, 2009. CLUSTER'09. IEEE International Conference on, 2009, pp. 1-9.
[45]
R. Malhotra, P. Jain, Study and Comparison of CloudSim simulators in the cloud computing, SIJ Trans. Comput. Sci. Eng. Its Appl., 1 (2013).
[46]
G. Wang, A.R. Butt, P. Pandey, K. Gupta, Using realistic simulation for performance analysis of MapReduce setups, in: Proceedings of the 1st ACM workshop on Large-Scale system and application performance, 2009, pp. 19-26.
[47]
S. Hammoud, M. Li, Y. Liu, N.K. Alham, Z. Liu, MRSim: a discrete event based MapReduce simulator, in: Fuzzy Systems and Knowledge Discovery (FSKD), 2010 Seventh International Conference on, 2010, pp. 2993-2997.
[48]
A. Murthy, Mumak: map-reduce simulator, MAPREDUCE-728, Apache JIRA (2009).
[49]
A. Verma, L. Cherkasova, R.H. Campbell, Play it again, SimMR!, in: Cluster Computing (CLUSTER), 2011 IEEE International Conference on, 2011, pp. 253-261.
[50]
C. Simatos, Making Simjava Count, The University of Edinburgh, 2002.
[51]
J. Jung, H. Kim, MR-cloudsim: designing and implementing MapReduce computing model on CloudSim, in: ICT Convergence (ICTC), 2012 International Conference on, 2012, pp. 504-509.
[52]
C. Yin, Z. Xiong, H. Chen, J. Wang, D. Cooper, B. David, A literature survey on smart cities, Sci. Chin. Inf. Sci., 58 (2015) 1-18.
[53]
A. Solanas, C. Patsakis, M. Conti, I. Vlachos, V. Ramos, F. Falcone, Smart health: a context-aware health paradigm within smart cities, Commun. Mag. IEEE, 52 (2014) 74-81.
[54]
L. Alarabi, A. Eldawy, R. Alghamdi, M.F. Mokbel, TAREEG: a MapReduce-based web service for extracting spatial data from OpenStreetMap, in: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, 2014, pp. 897-900.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Systems Architecture: the EUROMICRO Journal
Journal of Systems Architecture: the EUROMICRO Journal  Volume 72, Issue C
January 2017
120 pages

Publisher

Elsevier North-Holland, Inc.

United States

Publication History

Published: 01 January 2017

Author Tags

  1. Big data
  2. Cloud computing
  3. Internet of things (iot)
  4. Mapreduce
  5. Modelling and simulation
  6. Programming model

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A Lean Simulation Framework for Stress Testing IoT Cloud SystemsIEEE Transactions on Software Engineering10.1109/TSE.2024.340215750:7(1827-1851)Online publication date: 1-Jul-2024
  • (2024)Comprehensive review on congestion detection, alleviation, and control for IoT networksJournal of Network and Computer Applications10.1016/j.jnca.2023.103749221:COnline publication date: 1-Jan-2024
  • (2024)ASSOCIATEComputer Communications10.1016/j.comcom.2024.01.023217:C(107-125)Online publication date: 25-Jun-2024
  • (2024)Exploring machine learning solutions for overcoming challenges in IoT-based wireless sensor network routing: a comprehensive reviewWireless Networks10.1007/s11276-024-03697-230:4(2647-2673)Online publication date: 1-May-2024
  • (2024)Riding the Data Storms: Specifying and Analysing IoT Security Requirements with SURFINGLeveraging Applications of Formal Methods, Verification and Validation. REoCAS Colloquium in Honor of Rocco De Nicola10.1007/978-3-031-73709-1_24(392-408)Online publication date: 27-Oct-2024
  • (2023)A conceptual architecture for simulating blockchain-based IoT ecosystemsJournal of Cloud Computing: Advances, Systems and Applications10.1186/s13677-023-00481-z12:1Online publication date: 14-Jul-2023
  • (2023)Extending CloudSim to simulate sensor networksSimulation10.1177/0037549722110553099:1(3-22)Online publication date: 1-Jan-2023
  • (2023)Similarity-based deduplication and secure auditing in IoT decentralized storageJournal of Systems Architecture: the EUROMICRO Journal10.1016/j.sysarc.2023.102961142:COnline publication date: 1-Sep-2023
  • (2023)SPMACJournal of Systems Architecture: the EUROMICRO Journal10.1016/j.sysarc.2023.102951142:COnline publication date: 1-Sep-2023
  • (2023)CCNSimEngineering Applications of Artificial Intelligence10.1016/j.engappai.2022.105745119:COnline publication date: 1-Mar-2023
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media