[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Stream processing coalgebraically

Published: 01 November 2013 Publication History

Abstract

We study various operations for splitting, partitioning, projecting and merging streams of data. These operations are motivated by their use in dataflow programming and stream processing languages. We use the framework of stream calculus and stream circuits for defining and proving properties of such operations using behavioural differential equations and coinduction proof principles. As a featured example we give proofs of results, observed by Moessner, from elementary number theory using our framework. We study the invariance of certain well patterned classes of streams, namely rational and algebraic streams, under splitting and merging. Finally we show that stream circuits extended with gates for dyadic split and merge are expressive enough to realise some non-rational algebraic streams, thereby going beyond ordinary stream circuits.

References

[1]
Automatic Sequences: Theory, Applications, Generalizations. 2003. Cambridge University Press, Cambridge.
[2]
Arbab, F., Reo: a channel-based coordination model for component composition. Math. Structures Comput. Sci. v14. 329-366.
[3]
Berstel, J. and Reutenauer, C., Rational series and their languages. In: EATCS Monographs on Theoretical Computer Science, vol. 12. Springer-Verlag, Berlin.
[4]
Broy, M. and Ştef¿nescu, G., The algebra of stream processing functions. Theoret. Comput. Sci. v258. 99-129.
[5]
Christol, G., Ensembles presque periodiques k-reconnaissables. Theoret. Comput. Sci. v9. 141-145.
[6]
Fogg, N.P., Substitutions in dynamics, arithmetics and combinatorics. In: Berthé, Valérie, Ferenczi, Sébastien, Mauduit, Christian, Siegel, Anne (Eds.), Lecture Notes in Math., vol. 1794. Springer-Verlag, Berlin.
[7]
Graham, R.L., Knuth, D.E. and Patashnik, O., Concrete Mathematics. A foundation for computer science. 1994. second edition. Addison-Wesley, Reading, Massachusetts.
[8]
R. Hinze, Scans and convolutions: a calculational proof of Moessner's theorem, in: S.B. Scholz (Ed.), IFL 2008 Lecture Notes in Comput. Sci., vol. 5836, Springer-Verlag (to appear), 24 pages.
[9]
Hungerford, T.W., . In: Graduate Texts in Mathematics, vol. 73. Springer-Verlag, New York.
[10]
Kahn, G., The semantics of a simple language for parallel programming. In: Stockholm, vol. 74. North Holland Publishing Co., Amsterdam. pp. 471-475.
[11]
Kim, J., Coinductive properties of causal maps. In: Meseguer, J., Rosu, G. (Eds.), Lecture Notes in Comput. Sci., vol. 5140. Springer-Verlag. pp. 253-267.
[12]
Lucanu, D. and Roşu, G., CIRC: A circular coinductive prover. In: Mossakowski, T., Montanari, U., Haveraaen, M. (Eds.), Lecture Notes in Comput. Sci., vol. 4624. Springer-Verlag. pp. 372-378.
[13]
R.H. Mak, Design and Performance Analysis of Data-independent Stream Processing Systems, Ph.D. Thesis, Technische Universiteit Eindhoven, 2008.
[14]
Moessner, A., Eine Bemerkung über die Potenzen der natürlichen Zahlen. Sitzungsber. Math.-Naturw. Kl. Bayer. Akad. Wiss. München. v1951. 29
[15]
Perron, O., Beweis des Moessnerschen Satzes. Sitzungsber. Math.-Naturw. Kl. Bayer. Akad. Wiss. München. v1951. 31-34.
[16]
Rutten, J.J.M.M., Behavioural differential equations: a coinductive calculus of streams, automata, and power series. Theoret. Comput. Sci. v308. 1-53.
[17]
Rutten, J.J.M.M., A coinductive calculus of streams. Math. Structures Comput. Sci. v15. 93-147.
[18]
Rutten, J.J.M.M., A tutorial on coinductive stream calculus and signal flow graphs. Theoret. Comput. Sci. v343. 443-481.
[19]
Rutten, J.J.M.M., Algebraic specification and coalgebraic synthesis of mealy automata. In: Zhiming~Liu, L.B. (Ed.), Electron. Notes Theor. Comput. Sci., vol. 160. Elsevier. pp. 305-319.
[20]
Rutten, J.J.M.M., Rational streams coalgebraically. Log. Methods Comput. Sci. v4. 1-22.
[21]
Uustalu, T. and Vene, V., Comonadic notions of computation. In: Adámek, J., Kupke, C. (Eds.), Electron. Notes Theor. Comput. Sci., vol. 203(5). Elsevier. pp. 263-284.
[22]
Wilf, H.S., Generating Functionology. 1994. second edition. Academic Press Inc., Boston, MA.
  1. Stream processing coalgebraically

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Science of Computer Programming
    Science of Computer Programming  Volume 78, Issue 11
    November, 2013
    265 pages

    Publisher

    Elsevier North-Holland, Inc.

    United States

    Publication History

    Published: 01 November 2013

    Author Tags

    1. 11B57
    2. 11B85
    3. 68Q70
    4. 68Q85
    5. Algebraic stream
    6. Coinduction
    7. Dataflow programming
    8. Moessner's theorem
    9. Rational stream
    10. Stream calculus
    11. Stream circuit

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Jan 2025

    Other Metrics

    Citations

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media