[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Spiking neural P systems with neuron permeability

Published: 25 June 2024 Publication History

Abstract

Spiking neural P systems (SNP systems) are a class of distributed parallel and interpretable computing models developed in recent years, which are abstracted from the mechanism of spiking neurons and the nervous system. At present, the development of SNP variants has become a hot spot. To enhance the plasticity of SNP systems, inspired by the biological neural mechanism of the variable permeability of neurons, spiking neural P systems with neuron permeability (NP-SNP systems) are discovered and proposed as a novel variant of SNP systems. In NP-SNP systems, neurons have variable permeability directly related to membrane thickness. Membrane permeability changes with the change of membrane thickness. The proposed permeability spike rules are used to quantify changes in permeability. A specific NP-SNP system for generating arbitrary natural numbers is constructed. It is proved that the computing power of NP-SNP systems possesses Turing universality from number-generation, number-acceptance and computing functions. Devoted to the NP-complete problem, the NP-SNP system deterministically solves the Subset Sum problem in linear time. Compared with five variants, NP-SNP systems show advantages in less time steps and deterministic solutions.

References

[1]
Rozenberg G., Bäck T., Kok J.N., Handbook of Natural Computing, Springer, 2012.
[2]
Maass W., Network of spiking neurons: The third generation of neural network models, Trans. Soc. Comput. Simul. Int. 14 (4) (1997) 1659–1671.
[3]
Siegelmann H.T., Sontag E.D., Turing computability with neural nets, Appl. Math. Lett. 4 (6) (1991) 77–80.
[4]
Ghosh-Dastidar S., Adeli H., Spiking neural networks, Int. J. Neural Syst. 19 (04) (2009) 295–308.
[5]
Ionescu M., Păun G., Yokomori T., Spiking neural P systems, Fund. Inf. 71 (2–3) (2006) 279–308.
[6]
Peng H., Lv Z., Li B., Luo X., Wang J., Song X., Wang T., Pérez-Jiménez M.J., Riscos-Núñez A., Nonlinear spiking neural P systems, Int. J. Neural Syst. 30 (10) (2020).
[7]
Wu T., Pan L., Spiking neural P systems with communication on request and mute rules, IEEE Trans. Parallel Distrib. Syst. 34 (2) (2022) 734–745.
[8]
Cavaliere M., Ibarra O.H., Păun G., Egecioglu O., Ionescu M., Woodworth S., Asynchronous spiking neural P systems, Theoret. Comput. Sci. 410 (24–25) (2009) 2352–2364.
[9]
de la Cruz R.T.A., Cabarle F.G.C., Macababayao I.C.H., Adorna H.N., Zeng X., Homogeneous spiking neural p systems with structural plasticity, J. Membrane Comput. 3 (2021) 10–21.
[10]
Cabarle F.G.C., Adorna H.N., Jiang M., Zeng X., Spiking neural P systems with scheduled synapses, IEEE Trans. Nanobiosci. 16 (8) (2017) 792–801.
[11]
Garcia L., Sanchez G., Vazquez E., Avalos G., Anides E., Nakano M., Sanchez G., Perez H., Small universal spiking neural P systems with dendritic/axonal delays and dendritic trunk/feedback, Neural Netw. 138 (2021) 126–139.
[12]
Wu T., Zhang Z., Păun G., Pan L., Cell-like spiking neural P systems, Theoret. Comput. Sci. 623 (2016) 180–189.
[13]
Wu T., Pan L., Yu Q., Tan K.C., Numerical spiking neural P systems, IEEE Trans. Neural Netw. Learn. Syst. 32 (6) (2020) 2443–2457.
[14]
Wang L., Liu X., Sun M., Zhao Y., Evolution-communication spiking neural P systems with energy request rules, Neural Netw. 164 (2023) 476–488.
[15]
Peng H., Li B., Wang J., Song X., Wang T., Valencia-Cabrera L., Pérez-Hurtado I., Riscos-Núñez A., Pérez-Jiménez M.J., Spiking neural P systems with inhibitory rules, Knowl.-Based Syst. 188 (2020).
[16]
Liu Y., Zhao Y., Spiking neural P systems with lateral inhibition, Neural Netw. 167 (2023) 36–49.
[17]
Zhao Y., Shen Y., Liu X., Luo Y., Zang W., Liu X., Spiking neural P systems with long-term potentiation and depression, Inform. Sci. 640 (2023).
[18]
Wang X., Song T., Gong F., Zheng P., On the computational power of spiking neural P systems with self-organization, Sci. Rep. 6 (1) (2016) 27624.
[19]
Jiang S., Liu Y., Xu B., Sun J., Wang Y., Asynchronous numerical spiking neural P systems, Inform. Sci. 605 (2022) 1–14.
[20]
Zhang X., Zeng X., Luo B., Pan L., On some classes of sequential spiking neural P systems, Neural Comput. 26 (5) (2014) 974–997.
[21]
Wu T., Păun A., Zhang Z., Pan L., Spiking neural P systems with polarizations, IEEE Trans. Neural Netw. Learn. Syst. 29 (8) (2017) 3349–3360.
[22]
Garcia L., Sanchez G., Avalos J.-G., Vazquez E., Spiking neural P systems with myelin and dendritic spines, Neurocomputing 552 (2023).
[23]
Wu T., Bîlbîe F.-D., Păun A., Pan L., Neri F., Simplified and yet turing universal spiking neural P systems with communication on request, Int. J. Neural Syst. 28 (08) (2018).
[24]
Cabarle F.G.C., de la Cruz R.T.A., Zhang X., Jiang M., Liu X., Zeng X., On string languages generated by spiking neural P systems with structural plasticity, IEEE Trans. Nanobiosci. 17 (4) (2018) 560–566.
[25]
Zhao Y., Liu X., Wang W., Spiking neural P systems with neuron division and dissolution, PLoS One 11 (9) (2016).
[26]
Zhang L., Xu F., Spiking neural P systems with cooperative synapses, Neurocomputing 501 (2022) 222–230.
[27]
Custode L.L., Mo H., Iacca G., Neuroevolution of spiking neural P systems, in: International Conference on the Applications of Evolutionary Computation (Part of EvoStar), Springer, 2022, pp. 435–451.
[28]
Gungon R.V., Hernandez K.K.M., Cabarle F.G.C., De la Cruz R.T.A., Adorna H.N., Martínez-del Amor M.Á., Orellana-Martín D., Pérez-Hurtado I., GPU implementation of evolving spiking neural P systems, Neurocomputing 503 (2022) 140–161.
[29]
Xue J., Li Q., Liu X., Guo Y., Lu J., Song B., Huang P., An Q., Gong G., Li D., Hybrid neural-like P systems with evolutionary channels for multiple brain metastases segmentation, Pattern Recognit. 142 (2023).
[30]
Song T., Pang S., Hao S., Rodríguez-Patón A., Zheng P., A parallel image skeletonizing method using spiking neural P systems with weights, Neural Process. Lett. 50 (2019) 1485–1502.
[31]
Wang T., Liu W., Cabrera L.V., Wang P., Wei X., Zang T., A novel fault diagnosis method of smart grids based on memory spiking neural P systems considering measurement tampering attacks, Inform. Sci. 596 (2022) 520–536.
[32]
Peng H., Wang J., Ming J., Shi P., Pérez-Jiménez M.J., Yu W., Tao C., Fault diagnosis of power systems using intuitionistic fuzzy spiking neural P systems, IEEE Trans. Smart Grid 9 (5) (2017) 4777–4784.
[33]
Zhang G., Rong H., Neri F., Pérez-Jiménez M.J., An optimization spiking neural P system for approximately solving combinatorial optimization problems, Int. J. Neural Syst. 24 (05) (2014).
[34]
Dong J., Zhang G., Luo B., Rong H., An optimization numerical spiking neural P system for solving constrained optimization problems, Inform. Sci. 626 (2023) 428–456.
[35]
Huang Y., Liu Q., Peng H., Wang J., Yang Q., Orellana-Martín D., Sentiment classification using bidirectional LSTM-SNP model and attention mechanism, Expert Syst. Appl. 221 (2023).
[36]
Q. Liu, L. Long, H. Peng, J. Wang, Q. Yang, X. Song, A. Riscos-Núñez, M.J. Pérez-Jiménez, Gated spiking neural P systems for time series forecasting, IEEE Trans. Neural Netw. Learn. Syst.
[37]
Zhang Y., Yang Q., Liu Z., Peng H., Wang J., A prediction model based on gated nonlinear spiking neural systems, Int. J. Neural Syst. 33 (06) (2023).
[38]
Liu Q., Peng H., Long L., Wang J., Yang Q., Pérez-Jiménez M.J., Orellana-Martín D., Nonlinear spiking neural systems with autapses for predicting chaotic time series, IEEE Trans. Cybern. (2023) 1–13.
[39]
Custode L.L., Mo H., Ferigo A., Iacca G., Evolutionary optimization of spiking neural P systems for remaining useful life prediction, Algorithms 15 (3) (2022) 98.
[40]
Ma Y., Zhang Y., Wang Y., Wang Q., Ma X., Study of the effect of membrane thickness on microcapsule strength, permeability, and cell proliferation, J. Biomed. Mater. Res. Part A 101A (2013) 1–9.
[41]
Cabarle F.G.C., Adorna H.N., Pérez-Jiménez M.J., Song T., Spiking neural P systems with structural plasticity, Neural Comput. Appl. 26 (2015) 1905–1917.
[42]
Minsky M.L., Computation: Finite and Infinite Machines, Prentice-Hall, Inc., 1967.
[43]
Jiang S., Xu B., Liang T., Zhu X., Wu T., Numerical spiking neural P systems with production functions on synapses, Theoret. Comput. Sci. 940 (2023) 80–89.
[44]
Wu T., Zhang T., Xu F., Simplified and yet turing universal spiking neural P systems with polarizations optimized by anti-spikes, Neurocomputing 414 (2020) 255–266.
[45]
Michael R.G., David S.J., Computers and Intractability: A Guide to the Teory of NP-Completeness, WH Freeman and Company, New York, 1979.
[46]
Wang L., Liu X., Zhao Y., Universal nonlinear spiking neural P systems with delays and weights on synapses, Comput. Intell. Neurosci. 2021 (2021) 1–15.
[47]
Tian X., Liu X., Ren Q., Zhao Y., Spiking neural P systems with enzymes, IEEE Trans. NanoBiosci. 21 (4) (2022) 575–587.
[48]
Zhang L., Xu F., Spiking neural P systems with cooperative synapses, Neurocomputing 501 (2022) 222–230.
[49]
Cabarle F.G.C., Cruz R.T.A.D.L., Cailipan D.P.P., Zhang D., Zeng X., On solutions and representations of spiking neural P systems with rules on synapses, Inform. Sci. 501 (2019) 30–49.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Neurocomputing
Neurocomputing  Volume 576, Issue C
Apr 2024
359 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 25 June 2024

Author Tags

  1. Spiking neural P systems
  2. Membrane computing
  3. Neuron permeability
  4. Turing universality

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media