Convergence of deep ReLU networks
References
Recommendations
Convergence of deep convolutional neural networks
AbstractConvergence of deep neural networks as the depth of the networks tends to infinity is fundamental in building the mathematical foundation for deep learning. In a previous study, we investigated this question for deep networks with the Rectified ...
Parameter identifiability of a deep feedforward ReLU neural network
AbstractThe possibility for one to recover the parameters—weights and biases—of a neural network thanks to the knowledge of its function on a subset of the input space can be, depending on the situation, a curse or a blessing. On one hand, recovering the ...
Quasi-equivalence between width and depth of neural networks
While classic studies proved that wide networks allow universal approximation, recent research and successes of deep learning demonstrate the power of deep networks. Based on a symmetric consideration, we investigate if the design of artificial neural ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Publisher
Elsevier Science Publishers B. V.
Netherlands
Publication History
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0