[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Drug-target interactions prediction based on network topology feature representation embedded deep forest

Published: 28 September 2023 Publication History

Abstract

Identifying drug-target interactions (DTIs) is instructive in drug design and disease treatment. Existing studies typically used the properties of nodes (drug chemical structure and protein sequence) to construct drug and target features while ignoring the influence of network topology information on the prediction of DTIs. In this study, a hybrid computation model is proposed to predict DTIs based on the network topological feature representation embedded the deep forest model (NTFRDF). The main idea is to capture the topological differences by learning the low-dimensional feature representation of drugs and targets from the heterogeneous network. In addition, the multi-similarity fusion strategy is proposed to mine hidden useful information in the known DTIs from multi-view to enrich network features of the heterogeneous network. Based on the deep forest framework, the performance of the proposed method is examined on four benchmark datasets. Our experimental results verify that the proposed method is competitive compared with some existing DTIs prediction models.

References

[1]
K. Mcgarry, Y. Graham, S. Mcdonald, A. Rashid, Resko: Repositioning drugs by using side effects and knowledge from ontologies, Knowl.-Based Syst. 160 (15) (2018) 34–48.
[2]
R. Santos, O. Ursu, A. Gaulton, A.P. Bento, R.S. Donadi, C.G. Bologa, A. Karlsson, B. Al-Lazikani, A. Hersey, T.I. Oprea, A comprehensive map of molecular drug targets, Nat. Rev. Drug Discovery 16 (1) (2017) 19–36.
[3]
F. Leonardo, D.S. Ricardo, O. Glaucius, A. Adriano, Molecular docking and structure-based drug design strategies, Molecules 20 (7) (2015) 13384–13421.
[4]
S. Kalyaanamoorthy, S.M. Lamothe, X. Hou, T.C. Moon, H.T. Kurata, M. Houghton, K.H. Barakat, A structure-based computational workflow to predict liability and binding modes of small molecules to herg, Sci. Rep. 10 (1) (2020) 1–18.
[5]
H. Li, P. Wu, N. Zeng, Y. Liu, F. Alsaadi, A survey on parameter identification, state estimation and data analytics for lateral flow immunoassay: from systems science perspective, Int. J. Syst. Sci. 53 (16) (2022) 3556–3576.
[6]
A. Ezzat, P. Zhao, M. Wu, X. Li, C. Kwoh, Drug-target interaction prediction with graph regularized matrix factorization, IEEE/ACM Trans. Comput. Biol. Bioinf. 14 (3) (2016) 646–656.
[7]
M. Yang, L. Huang, Y. Xu, C. Lu, J. Wang, Heterogeneous graph inference with matrix completion for computational drug repositioning, Bioinformatics 36 (22–23) (2020) 5456–5464.
[8]
H. Lou, S. Li, Y. Zhao, Drug–target interaction prediction by random walk on the heterogeneous network, Mol. BioSyst. 8 (7) (2012) 1970–1978.
[9]
H. Luo, J. Wang, M. Li, J. Luo, X. Peng, F. Wu, Y. Pan, Drug repositioning based on comprehensive similarity measures and bi-random walk algorithm, Bioinformatics 32 (17) (2016) 2664–2671.
[10]
H. Öztürk, A. Özgür, O. Elif, DeepDTA: deep drug–target binding affinity prediction, Bioinformatics 34 (17) (2018) i821–i829.
[11]
H. Li, P. Wu, Z. Wang, J. Mao, F. Alsaadi, N. Zeng, A generalized framework of feature learning enhanced convolutional neural network for pathology-image-oriented cancer diagnosis, Comput. Biol. Med. 151 (2022).
[12]
H. Li, N. Zeng, P. Wu, K. Clawson, Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision, Expert Syst. Appl. 207 (2022).
[13]
I. Lee, J. Keum, H. Nam, DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences, PLoS Comput. Biol. 15 (6) (2019).
[14]
C. Chen, H. Shi, Z. Jiang, A. Salhi, R. Chen, X. Cui, B. Yu, DNN-DTIs: Improved drug-target interactions prediction using xgboost feature selection and deep neural network, Comput. Biol. Med. 136 (2021).
[15]
Z. Zhou, J. Feng, Deep forest, Natl. Sci. Rev. 6 (1) (2019) 74–86.
[16]
M. Bagherian, E. Sabeti, K. Wang, M.A. Sartor, Z. Nikolovska-Coleska, K. Najarian, Machine learning approaches and databases for prediction of drug–target interaction: a survey paper, Briefings Bioinform. 22 (1) (2021) 247–269.
[17]
Y. Luo, X. Zhao, J. Zhou, J. Yang, Y. Zhang, W. Kuang, J. Peng, L. Chen, J. Zeng, A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information, Nat. Commun. 8 (1) (2017) 1–13.
[18]
F. Wan, L. Hong, A. Xiao, T. Jiang, J. Zeng, NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions, Bioinformatics 35 (1) (2019) 104–111.
[19]
N. Zong, H. Kim, V. Ngo, O. Harismendy, Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations, Bioinformatics 33 (15) (2017) 2337–2344.
[20]
B. Ji, Z. You, H. Jiang, Z. Guo, K. Zheng, Prediction of drug-target interactions from multi-molecular network based on line network representation method, J. Transl. Med. 18 (1) (2020) 1–11.
[21]
P. Cui, X. Wang, J. Pei, W. Zhu, A survey on network embedding, IEEE Trans. Knowl. Data Eng. 31 (5) (2018) 833–852.
[22]
H. Chen, F. Cheng, J. Li, iDrug: Integration of drug repositioning and drug-target prediction via cross-network embedding, PLoS Comput. Biol. 16 (7) (2020).
[23]
Q. An, L. Yu, A heterogeneous network embedding framework for predicting similarity-based drug-target interactions, Briefings Bioinform. 22 (6) (2021) bbab275.
[24]
T. Van Laarhoven, S.B. Nabuurs, E. Marchiori, Gaussian interaction profile kernels for predicting drug–target interaction, Bioinformatics 27 (21) (2011) 3036–3043.
[25]
Z. Xia, L. Wu, X. Zhou, S. Wong, Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces, BMC Syst. Biol. 4 (2) (2010) 1–16.
[26]
K. Buza, L. Peška, Drug–target interaction prediction with bipartite local models and hubness-aware regression, Neurocomputing 260 (2017) 284–293.
[27]
P. Wu, Z. Wang, B. Zheng, H. Li, F. Alsaadi, N. Zeng, AGGN: Attention-based glioma grading network with multi-scale feature extraction and multi-modal information fusion, Comput. Biol. Med. 152 (2023).
[28]
X. Zeng, S. Zhu, Y. Hou, P. Zhang, L. Li, J. Li, L. Huang, S. Lewis, R. Nussinov, F. Cheng, Network-based prediction of drug–target interactions using an arbitrary-order proximity embedded deep forest, Bioinformatics 36 (9) (2020) 2805–2812.
[29]
M.A. Thafar, R.S. Olayan, H. Ashoor, S. Albaradei, V.B. Bajic, X. Gao, T. Gojobori, M. Essack, DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques, J. Cheminformatics 12 (1) (2020) 1–17.
[30]
Y. Ding, J. Tang, F. Guo, Identification of drug–target interactions via dual laplacian regularized least squares with multiple kernel fusion, Knowl.-Based Syst. 204 (2020).
[31]
Y. Chu, A. Kaushik, X. Wang, W. Wang, Y. Zhang, X. Shan, D.L. Salahub, Y. Xiong, D. Wei, DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features, Briefings Bioinform. 22 (1) (2021) 451–462.
[32]
L. Peng, B. Liao, W. Zhu, Z. Li, K. Li, Predicting drug–target interactions with multi-information fusion, IEEE J. Biomed. Health Inform. 21 (2) (2015) 561–572.
[33]
Y. Wang, Z. You, S. Yang, H. Yi, Z. Chen, K. Zheng, A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network, BMC Med. Inform. Decis. Mak. 20 (2) (2020) 1–9.
[34]
J. Menche, A. Sharma, M. Kitsak, S. Ghiassian, M. Vidal, J. Loscalzo, A. Barabási, Uncovering disease-disease relationships through the incomplete interactome, Science 347 (6224) (2015) 1257601.
[35]
A. Ezzat, M. Wu, X. Li, C. Kwoh, Drug-target interaction prediction using ensemble learning and dimensionality reduction, Methods 129 (2017) 81–88.
[36]
S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph representations with global structural information. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 891–900, 2015.
[37]
D. Ruta, B. Gabrys, An overview of classifier fusion methods, Comput. Inform. Syst. 7 (1) (2000) 1–10.
[38]
M. Yang, G. Wu, Q. Zhao, Y. Li, J. Wang, Computational drug repositioning based on multi-similarities bilinear matrix factorization, Briefings Bioinform. 22 (4) (2021) bbaa267.
[39]
M. De Domenico, V. Nicosia, A. Arenas, V. Latora, Structural reducibility of multilayer networks, Nat. Commun. 6 (1) (2015) 1–9.
[40]
M. Zhang, J. Wang, W. Wang, HeteRank: A general similarity measure in heterogeneous information networks by integrating multi-type relationships, Inf. Sci. 453 (2018) 389–407.
[41]
Q. Yu, J. Huang, The analysis of the druggable families based on topological features in the protein-protein interaction network, Lett. Drug Des. Discov. 9 (4) (2012) 426–430.
[42]
G. Marçais, D. DeBlasio, P. Pandey, C. Kingsford, Locality-sensitive hashing for the edit distance, Bioinformatics 35 (14) (2019) i127–i135.
[43]
F. Cheng, I. Kovács, A. Barabási, Network-based prediction of drug combinations, Nat. Commun. 10 (1) (2019) 1–11.
[44]
Z. Zhang, P. Cui, X. Wang, J. Pei, X. Yao, and W. Zhu. Arbitrary-order proximity preserved network embedding. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2778–2786, 2018.
[45]
S. Shishkin, A. Shalaginov, S. Bopardikar, Fast approximate truncated SVD, Numer. Linear Algebra Appl. 26 (4) (2019).
[46]
G. Strang, Linear algebra and its applications, Thomson, Brooks/Cole, Belmont, CA, 2006.
[47]
Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, M. Kanehisa, Prediction of drug–target interaction networks from the integration of chemical and genomic spaces, Numer. Linear Algebra Appl. 24 (13) (2008) i232–i240.
[48]
D.S. Wishart, C. Knox, A. Guo, D. Cheng, S. Shrivastava, D. Tzur, B. Gautam, M. Hassanali, DrugBank: a knowledgebase for drugs, drug actions and drug targets, Nucl. Acids Res. (suppl_1) (2008) D901–D906.
[49]
M. Kanehisa, S. Goto, M. Hattori, K.F. Aoki-Kinoshita, M. Itoh, S. Kawashima, T. Katayama, M. Araki, M. Hirakawa, From genomics to chemical genomics: new developments in KEGG, Nucl. Acids Res. 34 (suppl_1) (2006) D354–D357.
[50]
I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn, D. Schomburg, BRENDA, the enzyme database: updates and major new developments, Nucl. Acids Res. 32 (suppl_1) (2004) D431–D433.
[51]
S. Günther, M. Kuhn, M. Dunkel, M. Campillos, C. Senger, E. Petsalaki, J. Ahmed, E. Urdiales, A. Gewiess, L. Jensen, et al., SuperTarget and Matador: resources for exploring drug-target relationships, Nucl. Acids Res. 36 (suppl_1) (2007) D919–D922.
[52]
T.F. Smith, M.S. Waterman, et al., Identification of common molecular subsequences, J. Mol. Biol. 147 (1) (1981) 195–197.
[53]
M. Hattori, Y. Okuno, S. Goto, M. Kanehisa, Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways, J. Am. Chem. Soc. 125 (39) (2003) 11853–11865.
[54]
O.M. Beigi, M.H. Moattar, Automatic construction of domain-specific sentiment lexicon for unsupervised domain adaptation and sentiment classification, Knowl.-Based Syst. 213 (2021).
[55]
B. Yu, W. Qiu, C. Chen, A. Ma, J. Jiang, H. Zhou, Q. Ma, SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and extreme gradient boosting, Bioinformatics 36 (4) (2020) 1074–1081.
[56]
J. Keum, H. Nam, SELF-BLM: Prediction of drug-target interactions via self-training svm, PloS One 12 (2) (2017).
[57]
J. Shi, J. Li, H. Lu, and Y. Zhang. Predicting drug-target interactions between new drugs and new targets via pairwise K-nearest neighbor and automatic similarity selection. In International Conference on Intelligent Science and Big Data Engineering, pp. 477–486, 2015.
[58]
J. Yang, S. He, Z. Zhang, X. Bo, NegStacking: drug-target interaction prediction based on ensemble learning and logistic regression, IEEE/ACM Trans. Comput. Biol. Bioinf. 18 (6) (2020) 2624–2634.
[59]
H. Shi, S. Liu, J. Chen, X. Li, Q. Ma, B. Yu, Predicting drug-target interactions using lasso with random forest based on evolutionary information and chemical structure, Genomics 111 (6) (2019) 1839–1852.
[60]
F. Rayhan, S. Ahmed, S. Shatabda, D. Farid, Z. Mousavian, A. Dehzangi, M. Rahman, iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting, Sci. Rep. 7 (1) (2017) 1–18.
[61]
C. Sun, P. Xuan, T. Zhang, Y. Ye, Graph convolutional autoencoder and generative adversarial network-based method for predicting drug-target interactions, IEEE/ACM Trans. Comput. Biol. Bioinf. 19 (1) (2020) 455–464.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Neurocomputing
Neurocomputing  Volume 551, Issue C
Sep 2023
384 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 28 September 2023

Author Tags

  1. Drug-target interactions
  2. Low-dimensional feature representation
  3. Composite similarities
  4. Topological difference
  5. Deep forest

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media