[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Super-resolution of hyperspectral image via superpixel-based sparse representation

Published: 17 January 2018 Publication History

Abstract

In this paper, a novel superpixel-based sparse representation (SSR) model is proposed for hyperspectral image (HSI) super-resolution. Specifically, given a HSI with low spatial resolution and a multispectral image (MSI) with high spatial resolution, the proposed SSR approach first learns a spectral dictionary from HSI and constructs a transformed dictionary corresponding to MSI. Then, the SSR method clusters the MSI into superpixels, whose shape and size can be adaptively adjusted according to the local structures. Since pixels within each superpixel have strong similarities, the SSR method simultaneously decomposes them on the transformed dictionary to generate the corresponding fractional abundance coefficient matrix, which can exploit the similarities within the superpixel to improve the sparse decomposition. Finally, the high resolution hyperspectral image can be reconstructed with the obtained fractional abundance coefficient matrix. Experimental results show that the proposed approach is superior to some well-known HSI super-resolution methods.

References

[1]
L. Fang, S. Li, X. Kang, J.A. Benediktsson, Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation, IEEE Trans. Geosci. Remote Sens., 52 (2014) 7738-7749.
[2]
Y. Gu, H. Liu, Sample-screening MKL method via boosting strategy for hyperspectral image classification, Neurocomputing, 173 (2016) 1630-1639.
[3]
W. Li, Q. Du, Collaborative representation for hyperspectral anomaly detection, IEEE Trans. Geosci. Remote Sens, 53 (2015) 1463-1474.
[4]
Y. Gu, Y. Wang, H. Zheng, Y. Hu, Hyperspectral target detection via exploiting spatial-spectral joint sparsity, Neurocomputing, 169 (2015) 5-12.
[5]
H.V. Nguyen, A. Banerjee, R. Chellappa, Tracking via object reflectance using a hyperspectral video camera, in: IEEE Conference on Computer Vision and Pattern Recognition Workshop, 2010, pp. 44-51.
[6]
J. Yang, J. Wright, T.S. Huang, Y. Ma, Image super-resolution via sparse representation, IEEE Trans. Image Process., 19 (2010) 2861-2873.
[7]
Q. Wang, Y. Yuan, Learning to resize image, Neurocomputing, 131 (2014) 357-367.
[8]
Q. Wang, Y. Yuan, High quality image resizing, Neurocomputing, 131 (2014) 348-356.
[9]
N. Akhtar, F. Shafait, A. Mian, Sparse spatio-spectral representation for hyperspectral image super-resolution, in: European Conference on Computer Vision, 2014, pp. 63-78.
[10]
B. Du, S. Wang, N. Wang, L. Zhang, D. Tao, L. Zhang, Hyperspectral signal unmixing based on constrained non-negative matrix factorization approach, Neurocomputing, 204 (2016) 153-161.
[11]
N. Yokoya, T. Yairi, A. Iwasaki, Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion, IEEE Trans. Geosci. Remote Sens, 50 (2012) 528-537.
[12]
R. Kawakami, J. Wright, Y.W. Tai, Y. Matsushita, M. Ben-Ezra, K. Ikeuchi, High-resolution hyperspectral imaging via matrix factorization, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 2329-2336.
[13]
E. Wycoff, T.H. Chan, K. Jia, W.K. Ma, Y. Ma, A non-negative sparse promoting algorithm for high resolution hyperspectral imaging, in: International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 1409-1413.
[14]
Q. Geng, H. Wang, J. Wright, On the local correctness of 1 minimization for dictionary learning, in: IEEE International Symposium on Information Theory (ISIT), 2014, pp. 3180-3184.
[15]
Y. Yuan, G. Zhu, Q. Wang, Hyperspectral band selection by multitask sparsity pursuit, IEEE Trans. Geosci. Remote Sens, 53 (2015) 631-644.
[16]
Y. Yuan, J. Lin, Q. Wang, Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization, IEEE Trans. Cybern, 46 (2016) 2966-2977.
[17]
L. Fang, C. Wang, S. Li, J.A. Benediktsson, Hyperspectral image classification via multiple-feature-based adaptive sparse representation, IEEE Trans. Instrum. Meas (2017).
[18]
E. Zhang, X. Zhang, L. Jiao, L. Li, B. Hou, Spectral-spatial hyperspectralimage ensemble classification via joint sparse representation, Pattern Recognit, 59 (2016) 42-54.
[19]
W. Li, Q. Du, Joint within-class collaborative representation for hyperspectral image classification, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, 7 (2014) 2200-2208.
[20]
J. Li, H. Zhang, L. Zhang, X. Huang, L. Zhang, Joint collaborative representation with multitask learning for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens, 52 (2014) 5923-5936.
[21]
H. Zhang, J. Li, Y. Huang, L. Zhang, A nonlocal weighted joint sparse representation classification method for hyperspectral imagery, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, 7 (2014) 2056-2065.
[22]
Y. Zhang, B. Do, L. Zhang, T. Liu, Joint sparse representation and multitask learning for hyperspectral target detection, IEEE Trans. Geosci. Remote Sens., 55 (2017) 894-906.
[23]
Y. Chen, N.M. Nasrabadi, T.D. Tran, Simultaneous joint sparsity model for target detection in hyperspectral imagery, IEEE Geosci. Remote Sens. Lett, 8 (2011) 676-680.
[24]
H. Song, B. Huang, K. Zhang, H. Zhang, Spatio-spectral fusion of satellite images based on dictionary-pair learning, Inf. Fusion, 18 (2014) 148-160.
[25]
B. Huang, H. Song, H. Cui, J. Peng, Z. Xu, Spatial and spectral image fusion using sparse matrix factorization, IEEE Trans. Geosci. Remote Sens, 52 (2014) 1693-1704.
[26]
J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learning for sparse coding, in: International Conference on Machine Learning (ICML), 2009, pp. 689-696.
[27]
M.-Y. Liu, O. Tuzel, S. Ramalingam, R. Chellappa, Entropy rate superpixel segmentation, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 2097-2104.
[28]
Y. Shen, J. Li, Z. Zhu, W. Cao, Y. Song, Image reconstruction algorithm from compressed sensing measurements by dictionary learning, Neurocomputing, 151 (2015) 1153-1162.
[29]
H. Zou, T. Hastie, R. Tibshirani, Sparse principal component analysis, J. Comput. Graph. Stat, 15 (2006) 265-286.
[30]
D.A. Landgrebe, L. Biehl, 220 Band Hyperspectral Image: AVIRIS image Indian Pine Test Site 3, Purdue University, West Lafayette, School of Engineering. 1992. http://www.dynamo.ecn.purdue.edu/biehl/MultiSpec/.
[31]
R.O. Green, Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS), Remote Sens. Environ, 65 (1998) 227-248.
[32]
F. Dell'Acqua, P. Gamba, A. Ferrari, Exploiting spectral and spatial information for classifying hyperspectral data in urban areas, in: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2003, pp. 464-466.
[33]
L. Wald, Quality of high resolution synthesised images: is there a simple criterion?, in: International Conference on Fusion Earth Data, 2000, pp. 99-103.
[34]
Q. Wei, J. Bioucas-Dias, N. Dobigeon, J.Y. Tourneret, Hyperspectral and multispectral image fusion based on a sparse representation, IEEE Trans. Geosci. Remote Sens, 53 (2015) 3658-3668.

Cited By

View all
  1. Super-resolution of hyperspectral image via superpixel-based sparse representation

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Neurocomputing
    Neurocomputing  Volume 273, Issue C
    January 2018
    567 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 17 January 2018

    Author Tags

    1. Hyperspectral image
    2. Sparse representation
    3. Super-resolution
    4. Superpixel

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 04 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Spatial-Spectral Deep Residual Network for Hyperspectral Image Super-ResolutionSN Computer Science10.1007/s42979-023-01868-04:4Online publication date: 2-Jun-2023
    • (2022)Parallel tensor factorization for relational learningNeural Computing and Applications10.1007/s00521-021-05692-634:11(8455-8464)Online publication date: 1-Jun-2022
    • (2022)An improved anchor neighborhood regression SR method based on low-rank constraintThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-020-02022-038:2(405-418)Online publication date: 1-Feb-2022
    • (2022)A Deep Wavelet Network for High-Resolution Microscopy Hyperspectral Image ReconstructionComputer Vision – ECCV 2022 Workshops10.1007/978-3-031-25082-8_44(648-662)Online publication date: 23-Oct-2022
    • (2021)A Non-Local Superpatch-Based Algorithm Exploiting Low Rank Prior for Restoration of Hyperspectral ImagesIEEE Transactions on Image Processing10.1109/TIP.2021.309378030(6335-6348)Online publication date: 1-Jan-2021
    • (2020)Hyperspectral Image Super-Resolution via Deep Progressive Zero-Centric Residual LearningIEEE Transactions on Image Processing10.1109/TIP.2020.304421430(1423-1438)Online publication date: 29-Dec-2020
    • (2020)Extraction of Spectral-Spatial 3-Dimensional Homogeneous Regions from Hyperspectral Images and Its Application to Fast ClassificationPattern Recognition and Computer Vision10.1007/978-3-030-60639-8_17(200-207)Online publication date: 16-Oct-2020
    • (2019)Image Super Resolution Using Fractal Coding and Residual NetworkComplexity10.1155/2019/94191072019Online publication date: 28-Nov-2019
    • (2018)Deep Residual Attention Network for Spectral Image Super-ResolutionComputer Vision – ECCV 2018 Workshops10.1007/978-3-030-11021-5_14(214-229)Online publication date: 8-Sep-2018

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media