[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Separable vocabulary and feature fusion for image retrieval based on sparse representation

Published: 02 May 2017 Publication History

Abstract

Visual vocabulary is the core of the Bag-of-visual-words (BOW) model in image retrieval. In order to ensure the retrieval accuracy, a large vocabulary is always used in traditional methods. However, a large vocabulary will lead to a low recall. In order to improve recall, vocabularies with medium sizes are proposed, but they will lead to a low accuracy. To address these two problems, we propose a new method for image retrieval based on feature fusion and sparse representation over separable vocabulary. Firstly, a large vocabulary is generated on the training dataset. Secondly, the vocabulary is separated into a number of vocabularies with medium sizes. Thirdly, for a given query image, we adopt sparse representation to select a vocabulary for retrieval. In the proposed method, the large vocabulary can guarantee a relatively high accuracy, while the vocabularies with medium sizes are responsible for high recall. Also, in order to reduce quantization error and improve recall, sparse representation scheme is used for visual words quantization. Moreover, both the local features and the global features are fused to improve the recall. Our proposed method is evaluated on two benchmark datasets, i.e., Coil20 and Holidays. Experiments show that our proposed method achieves good performance.

References

[1]
Q.S. Chen, Y.Y. Ding, H. Li, J. Wang, X. Deng, A novel multi-feature fusion and sparse coding-based framework for image retrieval. IEEE International Conference on System, Man, and Cybernetics. 2014. 23912396.
[2]
H. Jegou, M. Douze, C. Schmid, Hamming embedding and weak geometric consistency for large cale image search, ECCV (2008) 1-7.
[3]
J. Sivic, A. Zisserman, Video Google, ICCV, 2 (2003) 1470-1477.
[4]
J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman, Object retrieval with large vocabularies and fast spatial matching, CVPR (2007) 1-8.
[5]
J. Sivic, A. Zisserman, Efficient visual search of videos cast as text retrieval, IEEE Trans. Pattern Anal. Mach. Intell., 31 (2009) 591-606.
[6]
D. Lowe, Distinctive image features from scale- invariant keypoints, IJCV, 60 (2004) 91-110.
[7]
A. Relja, A. Zisserman, Three things everyone should know to improve object retrieval, CVPR (2012) 2911-2918.
[8]
H. Bay, A. Ess, T. Tuytelaars, L.V. Gool, Speeded-up robust features (SURF), Comput. Vis. Image Underst., 110 (2008) 346-359.
[9]
J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman, Lost in quantization: Improving particular object retrieval in large scale image databases. IEEE Conference Comput. Vis. Pattern Recognit. 2008. 18.
[10]
Z. Liu, H.Q. Li, W.G. Zhou, R.C. Hong, Q. Tian, Uniting Keypoints, IEEE Trans. Multimed., 17 (2015) 538-547.
[11]
H. Jegou, M. Douze, C. Schmid, Aggregating local descriptors into a compact image representation. IEEE Conference on Computer Vision and Pattern Recognition, 2010. 33043311.
[12]
H. Jegou, O. Chum, Negative evidences and co-occurences in image retrieval: the benefit of PCA and whitening. European Conference on Computer Vision, 2012. 774787.
[13]
F. Perronnin, Y. Liu, J. Sanchez, H. Poirier, large-scale image retrieval with compressed fisher vectors. In Proceedings Comput. Vis. Pattern. Recog., 2010. 33843391.
[14]
L. Zheng, S.J. Wang, W.G. Zhou, Q. Tian, Bayes merging of multiple vocabularies for scalable image retrieval, CVPR (2014) 4321-4328.
[15]
Y. Xia, K.M. He, F. Wen, J. Sun, Joint inverted indexing, ICCV (2013) 3416-3423.
[16]
J. Shi, Z.G. Jiang, H. Feng, L.G. Zhang, SIFT-based Elastic sparse coding for image retrieval, ICIP (2012) 2437-2440.
[17]
J. Mairal, M. Elad, G. Sapiro, Sparse representation for color image restoration, IEEE Trans. Process., 17 (2008) 53-69.
[18]
J.C. Yang, J. Wright, T. Huang, Y. Ma, Image super-resolution as sparse representation of raw image patches, CVPR (2008) 1-8.
[19]
K. Cheng, X. Tan, Sparse representations based attribute learning for flower classification {J}, Neurocomputing, 145 (2014) 416-426.
[20]
Z. Fan, M. Ni, Q. Zhu, Weighted sparse representation for face recognition {J}, Neurocomputing, 151 (2015) 304-309.
[21]
J.J. Wang, J.C. Yang, K. Yu, F.J. Lv, T.S. Huang, Y.H. Gong, Locality-constrained linear coding for image classification, CVPR (2010) 3360-3367.
[22]
A. Oliva, A. Torralba, Modeling the shape of the scene, IJCV, 42 (2001) 145-175.
[23]
J. Hayes, A. Efros, Scene completion using millions of photographs, SIGGRAPH (2007) 1-7.
[24]
M. Douze, A. Gaidon, H. Jegou, M. Marszalek, C. Schmid, INRIALEAR's video copy detection system, TRECVID Workshop (2008).
[25]
X. Li, C. Wu, C. Zach, S. Lazebnik, J.-M. Frahm, Modeling and recognition of landmark image collections using iconic scene graphs, ECCV (2008) 1-14.
[26]
M. Douze, H. Jegou, H. Sandhawalia, L. Amsaleg, C. Schmidt, Evaluation of GIST descriptors for web-scale image search. International Conference on Image and Video Retrieval. ACM. 2009. 19, 18.
[27]
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, Neural Inf. Process. Syst. (2012).
[28]
M.D. Zeiler, R. Fergus, Visualizing and Understanding Convolutional Networks {J}, Lect. Notes Comput. Sci., 8689 (2013) 818-833.
[29]
D. Yu, M.L. Seltzer, J. Li, Feature Learn. Deep Neural Netw. - A Study Speech Recognit. Tasks {J.} (2013).
[30]
A.S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN features off-the-shelf, CVPR Deep Vis. Workshop (2014).
[31]
A. Babenko, A. Slesarev, A. Chigorin, V.S. Lempitsky, Neural codes for image retrieval, ECCV, 8689 (2014) 584-599.
[32]
J. Wan, D. Wang, S.C.H. Hoi, Deep Learning for Content-Based Image Retrieval: A Comprehensive Study. ACM International Conference on Multimedia, 2014. 157166.
[33]
A. Gordo, J. Almazan, J. Revaud, Deep Image Retrieval: Learning global representations for image search (2016).
[34]
D.A.R. Vigo, F.S. Khan, J.V.D. Weijer, The impact of color on bag-of-words based object recognition, ICPR (2010) 1549-1553.
[35]
D. Niester, H. Stewenius, Scalable recognition with a vocabulary tree, CVPR, 2 (2006) 2161-2168.
[36]
R. Gray, Vector quantization, ASSP Mag., 1 (1984) 4-29.
[37]
L. Zheng, S. Wang, Z. Liu, Q. Tian, Packing and padding, CVPR (2014) 1947-1954.
[38]
J. Wright, A. Yang, A. Ganesh, S. Sastry, Y. Ma, Robust face recognition via sparse representation, IEEE Trans. Pattern Anal. Mach. Intell., 31 (2009) 210-227.
[39]
L. Zheng, S.J. Wang, L. Tian, He, Z.Q. Liu, Q. Tian, Query-adaptive late fusion for image search and person re-identification, CVPR (2015) 1741-1750.
[40]
K. Mikolajczyk, C. Schmid, Scale & affine invariant interest point detectors, IJCV, 1 (2004) 63-86.
[41]
M. Elad, Sparse and Redundant Representations: from Theory to Applications in Signal and Image Processing, Springer, New York, 2010.
[42]
A.M. Bruckstein, M. Elad, M. Zibulevsky, On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations, IEEE Trans. Inf. Theory, 54 (2008) 4813-4820.
[43]
S.G. Mallat, Z. Zhang, Maching pursuits with time-frequency dictionaries, Signal Process. Mag., 17 (2000) 58-64.
[44]
F.Z. Zhang, R.Z. Zhao, Y.G. Cen, Adaptive Sparse Recovery Based on Difference Algorithm {J}, J. Comput.-Aided Des. Comput. Graph., 27 (2015) 1047-1052.
[45]
Y. Jiang, J. Meng, J. Yuan, Randomized visual phrases for object search, CVPR (2012) 3100-3107.
[46]
S.A. Nene, S.K. Nayar, H. Murase, Columbia Object Image Library (COIL-20). Technical Report CUCS-005-96. 1996.
[47]
L. Zheng, S. Wang, Z. Liu, Q. Tian, Lp-norm idf for large scale image search, CVPR (2013) 1626-1633.
[48]
A. Cho, W.K. Yang, D.S. Jeong, Bag-of-features signature using invariant region descriptor for object retrieval, Workshop Front. Comput. Vis. (2011) 1-4.
[49]
R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R. Stat. Soc., 58 (1996) 267-288.

Cited By

View all
  • (2020)A novel method for content-based image retrieval to improve the effectiveness of the bag-of-words model using a support vector machineJournal of Information Science10.1177/016555151878282545:1(117-135)Online publication date: 18-Jun-2020
  • (2019)RETRACTED ARTICLE: Fuzzy rough subset method with region based mining to improve the retrieval and ranking of real time images over larger image databaseMultimedia Tools and Applications10.1007/s11042-019-7289-x79:5-6(3861-3878)Online publication date: 20-Feb-2019
  • (2019)Face retrieval using frequency decoded local descriptorMultimedia Tools and Applications10.1007/s11042-018-7028-878:12(16411-16431)Online publication date: 1-Jun-2019
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Neurocomputing
Neurocomputing  Volume 236, Issue C
May 2017
160 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 02 May 2017

Author Tags

  1. Feature fusion
  2. Image retrieval
  3. Separable vocabulary
  4. Sparse representation

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2020)A novel method for content-based image retrieval to improve the effectiveness of the bag-of-words model using a support vector machineJournal of Information Science10.1177/016555151878282545:1(117-135)Online publication date: 18-Jun-2020
  • (2019)RETRACTED ARTICLE: Fuzzy rough subset method with region based mining to improve the retrieval and ranking of real time images over larger image databaseMultimedia Tools and Applications10.1007/s11042-019-7289-x79:5-6(3861-3878)Online publication date: 20-Feb-2019
  • (2019)Face retrieval using frequency decoded local descriptorMultimedia Tools and Applications10.1007/s11042-018-7028-878:12(16411-16431)Online publication date: 1-Jun-2019
  • (2017)SURF binarization and fast codebook construction for image retrievalJournal of Visual Communication and Image Representation10.1016/j.jvcir.2017.08.00649:C(104-114)Online publication date: 1-Nov-2017

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media