[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
review-article

Technology review of CNTs TSV in 3D IC and 2.5D packaging: : Progress and challenges from an electrical viewpoint

Published: 18 July 2024 Publication History

Abstract

Through‑silicon via (TSV) is one of the most important features in 3D integrated circuit (IC) and 2.5D packaging. Both are within the advanced packaging topic for the digital and analog ICs aligned with More than Moore's paradigm. This article revisits the proposal and progress of carbon nanotubes (CNTs) TSV technology that potentially offers an improvement over the conventional Cu TSV. Today, CNTs TSV has never materialized in commercial products of 3D IC and 2.5D packaging. Compilation on notable numerical modeling works and matching them with related issues in fabrication suggest CNTs TSV technology is still in its infant stage. Although the simulation occasionally shows the advantages of CNTs TSV over Cu TSV in both digital and analog circuits, these results are prone to overestimation. One of the culprits is the number of CNT strands in the bundle which at best can be grown in the fab only ∼ 1 % of the theoretically compact bundle used in the RLC and RLGC models. The direction where CNTs TSV is targeting in 3D IC and 2.5D packaging is not clear by several researchers. As the requirements for high-speed digital and high-frequency analog are different, they are important to be sorted out as an essence of this review to project the path of this CNTs TSV technology.

Highlights

The progress of CNTs in TSV for 3D ICs and 2.5D packaging is reviewed.
RLGC modeling works and issues in fabrication suggest CNTs TSV technology is still in an infant stage.
The high-density CNT forest is only ∼1% of the theoretically compact CNT packing, so the RLGC model is erroneous.
For high-frequency analog, development should focus on Cu-CNTs through glass via (TGV) interposer as 2.5D packaging.
For high-speed digital, CNTs TSVs are not a good replacement for Cu in 3D ICs and interposers of 2.5D packaging.

References

[1]
G.E. Moore, Cramming more components onto integrated circuits, Electronics 38 (1965) 114–117.
[2]
Executive summary, International Technology Roadmap for Semiconductors, 2005, Edition.
[3]
J.H. Lau, Semiconductor Advanced Packaging, Springer Nature, 2021.
[4]
R.K. Ratnesh, A. Goel, G. Kaushik, H. Garg, M. Chandan, B. Prasad Singh, Advancement and challenges in MOSFET scaling, Mater. Sci. Semicond. Process. 134 (2021).
[5]
Y. Ryu, S.G. Ahn, J.H. Lee, J. Park, Y.K. Kim, H. Kim, Y.G. Song, H.W. Cho, S. Cho, S.H. Song, H. Lee, U. Shin, J. Ahn, J.M. Ryu, S. Lee, K.H. Lim, J. Lee, J.H. Park, J.S. Jeong, S. Joo, D. Cho, S.Y. Kim, M. Lee, H. Kim, M. Kim, J.S. Kim, J. Kim, H.G. Kang, M.K. Lee, S.R. Kim, Y.C. Kwon, Y.Y. Byun, K. Lee, S. Park, J. Youn, M.O. Kim, K. Sohn, S.J. Hwang, J. Lee, A 16 GB 1024 GB/s HBM3 DRAM with source-synchronized bus design and on-die error control scheme for enhanced RAS features, IEEE J. Solid State Circuits 58 (2023) 1051–1061.
[6]
J.P. Gambino, S.A. Adderly, J.U. Knickerbocker, An overview of through-silicon-via technology and manufacturing challenges, Microelectron. Eng. 135 (2015) 73–106.
[7]
B. Song, Z. Li, X. Wang, X. Fu, F. Liu, L. Jin, Z. Huo, Analysis of HBM failure in 3D NAND flash memory, Electronics 11 (2022) 944.
[8]
T.H. Hung, Y.M. Pan, K.N. Chen, Stress issue of vertical connections in 3D integration for high-bandwidth memory applications, Memories – Mater. Devices Circuits Syst. 4 (2023).
[9]
J. Wuu, S. Naffziger, P.J. Shyvers, M.S. Bhagavat, K. Mysore, B.P. Wilkerson, Arrangement and thermal management of 3D stacked dies, US Patent Application Publication, US2019/0067152A1, 2019.
[10]
S. Chang, H. Shin, 2.4-GHz CMOS Bluetooth RF receiver with improved IM2 distortion tolerance, IEEE Trans. Microw. Theory Tech. 68 (2020) 4589–4598.
[11]
J. Chen, M. Berg, K. Rasilainen, Z. Siddiqui, M.E. Leinonen, A. Parssinen, Broadband cross-slotted patch antenna for 5G millimeter-wave applications based on characteristic mode analysis, IEEE Trans. Antennas Propag. 70 (2022) 11277–11292.
[12]
X. Yi, G. Feng, Z. Liang, C. Wang, B. Liu, C. Li, K. Yang, C.C. Boon, Q. Xue, A 24/77 GHz dual-band receiver for automotive radar applications, IEEE Access 7 (2019) 48053–48059.
[13]
J.O. Plouchart, X. Gu, W. Lee, A. Tzadok, D. Liu, H. Liu, M. Yeck, C. Baks, A.V. Garcia, Si-based 94-GHz phased array transmit and receive modules for real-time 3D radar imaging, in: 2019 IEEE MTT-S International Microwave Symposium, 2019, pp. 532–535.
[14]
H. Wang, J. Ma, Y. Yang, M. Gong, Q. Wang, A review of system-in-package technologies: application and reliability of advanced packaging, Micromachines 14 (2023) 1149.
[15]
V.R. Kumar, M.K. Majumder, B.K. Kaushik, Graphene-based on-chip interconnects and TSVs, IEEE Nanotechnol. Mag. 8 (2014) 14–20.
[16]
G. Mokry, J. Pozuelo, J.J. Vilatela, J. Sanz, J. Baselga, High ampacity carbon nanotube materials, Nanomaterials 9 (2019) 383.
[17]
Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review, Prog. Polym. Sci. 36 (2011) 914–944.
[18]
S.L. Burkett, M.B. Jordan, R.P. Schmitt, L.A. Menk, A.E. Hollowell, Tutorial on forming through-silicon vias, J. Vac. Sci. Technol. A 38 (2020).
[19]
M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, J. Nanosci. Nanotechnol. 10 (2010) 3739–3758.
[20]
G. Chen, D.N. Futaba, K. Hata, Catalysts for the growth of carbon nanotube “forests” and superaligned arrays, MRS Bull. 42 (2017) 802–808.
[21]
K.M. Vanderburgh, S.J. Park, F. Fornasiero, Growth of carbon nanotube forests on flexible metal substrates: advances, challenges, and applications, Carbon 206 (2023) 402–421.
[22]
T. Wang, K. Jeppson, N. Olofsson, E.E.B. Campbell, J. Liu, Through silicon vias filled with planarized carbon nanotube bundles, Nanotechnology 20 (2009).
[23]
D. Jiang, W. Mu, S. Chen, Y. Fu, K. Jeppson, J. Liu, Vertically stacked carbon nanotube-based interconnects for through silicon via application, IEEE Electron Device Lett. 36 (2015) 499–501.
[24]
T. Goyal, M.K. Majumder, B.K. Kaushik, Modeling and fabrication aspects of cu- and carbon nanotube-based through-silicon vias, IETE J. Res. 67 (2021) 377–393.
[25]
M. Vizuete, M.J. Gomez-Escalonilla, S. Garcia-Rodriguez, J.L.G. Fierro, P. Atienzar, H. Garcia, F. Langa, Photochemical evidence of electronic interwall communication in double-wall carbon nanotubes, Chem. Eur. J. 18 (2012) 16922–16930.
[26]
P.L. McEuen, M.S. Fuhrer, H. Park, Single-walled carbon nanotube electronics, IEEE Trans. Nanotechnol. 1 (2002) 78–85.
[27]
N. Srivastava, R.V. Joshi, K. Banerjee, Carbon nanotube interconnects: implications for performance, power dissipation and thermal management, IEEE Int. Electron Devices Meet. (2005) 249–252.
[28]
N. Srivastava, K. Banerjee, Performance analysis of carbon nanotube interconnects for VLSI applications, IEEE/ACM Int. Conf. Comp. Aided Design (2005) 383–390.
[29]
S. Ryu, R. Lopez, L. Serra, Conductance of electrostatic wire junctions in bilayer graphene, Phys. Rev. B 106 (2022).
[30]
J.Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T.A. Arias, P.W. Brouwer, P.L. McEuen, Electron−phonon scattering in metallic single-walled carbon nanotubes, Nano Lett. 4 (2004) 517–520.
[31]
S. Kannan, B. Kim, A. Gupta, S.H. Noh, L. Li, Characterization of high performance CNT-based TSV for high-frequency RF applications, Adv. Mater. Res. 1 (2012) 37–49.
[32]
N. Chiodarelli, K. Kellens, D.J. Cott, N. Peys, K. Arstila, M. Heyns, S.D. Gendt, G. Groeseneken, P.M. Vereeckena, Integration of vertical carbon nanotube bundles for interconnects, J. Electrochem. Soc. 157 (2010) K211–K217.
[33]
Y. Matsuda, W.Q. Deng, W.A. Goddard III, Contact resistance for “end-contacted” metal-graphene and metal-nanotube interfaces from quantum mechanics, J. Phys. Chem. C 114 (2010) 17845–17850.
[34]
T. Goyal, M.K. Majumder, B.K. Kaushik, Propagation delay and power dissipation for different aspect ratio of single-walled carbon nanotube bundled TSV, J. Semicond. 36 (2015).
[35]
A. Srivastava, Y. Xu, A.K. Sharma, Carbon nanotubes for next generation very large scale integration interconnects, J. Nanophoton. 4 (2010).
[36]
J. Dai, J. Li, H. Zeng, X. Cui, Measurements on quantum capacitance of individual single walled carbon nanotubes, Appl. Phys. Lett. 94 (2009).
[37]
B. Xu, R. Chen, J. Zhou, J. Liang, Recent progress and challenges regarding carbon nanotube on-chip interconnects, Micromachines 13 (2022) 1148.
[38]
A.V. Emelianov, N.P. Nekrasov, M.V. Moskotin, G.E. Fedorov, N. Otero, P.M. Romero, V.K. Nevolin, B.I. Afinogenov, A.G. Nasibulin, I.I. Bobrinetskiy, Individual SWCNT transistor with photosensitive planar junction induced by two-photon oxidation, Adv. Electron. Mater. 7 (2021) 2000872.
[39]
A. Alam, M.K. Majumder, A. Kumari, V.R. Kumar, B.K. Kaushik, Performance analysis of single- and multi-walled carbon nanotube based through silicon vias, in: 2015 IEEE 65th Electronic Components and Technology Conference, 2015, pp. 1834–1839.
[40]
A.K. Kureshi, M. Hasan, Analysis of CNT bundle and its comparison with copper interconnect for CMOS and CNFET drivers, J. Nanomater. 2009 (2009).
[41]
F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, W. Honlein, Carbon nanotubes in interconnect applications, Microelectron. Eng. 64 (2002) 399–408.
[42]
N.T. Dee, M. Schneider, D.N. Zakharov, P.R. Kidambi, A.J. Hart, Automated processing of environmental transmission electron microscopy images for quantification of thin film dewetting and carbon nanotube nucleation dynamics, Carbon 192 (2022) 249–258.
[43]
T. Xu, Z. Wang, J. Miao, X. Chen, C.M. Tan, Aligned carbon nanotubes for through-wafer interconnects, Appl. Phys. Lett. 91 (2007).
[44]
S. Choudhary, N. Singh, P. Ranjan, Induced magnetization in armchair and zig-zag CNTs on adsorbing transition metals, J. Magn. Magn. Mater. 538 (2021).
[45]
M. Amekpewu, S.Y. Mensah, R. Musah, S.S. Abukari, N.G. Mensah, K.A. Dompreh, Radius dependence of the electrical conductivity of zigzgag carbon nanotubes, Phys. E: Low-Dimens. Syst. Nanostruct. 130 (2021).
[46]
S. Ilani, P.L. McEuen, Electron transport in carbon nanotubes, Annu. Rev. Condens. Matter Phys. 1 (2010) 1–25.
[47]
M.V. Kharlamova, Investigation of growth dynamics of carbon nanotubes, Beilstein J. Nanotechnol. 8 (2017) 826–856.
[48]
T. Wang, K. Jeppson, L. Ye, J. Liu, Carbon-nanotube through-silicon via interconnects for three-dimensional integration, Small 22 (2011) 2313–2317.
[49]
Z. Yu, P.J. Burke, Microwave transport in metallic single-walled carbon nanotubes, Nano Lett. 5 (2005) 1403–1406.
[50]
W. Wang, S. Haruehanroengra, L. Shang, M. Liu, Inductance of mixed carbon nanotube bundles, Micro, Nano Lett. 2 (2007) 35–39.
[51]
M.K. Majumder, B.K. Kaushik, S.K. Manhas, Analysis of delay and dynamic crosstalk in bundled carbon nanotube interconnects, IEEE Trans. Electromagn. Compat. 56 (2014) 1666–1673.
[52]
W.S. Zhao, L. Sun, W.Y. Yin, Y.X. Guo, Electrothermal modelling and characterisation of submicron through-silicon carbon nanotube bundle vias for three-dimensional ICs, Micro Nano Lett. 9 (2014) 123–126.
[53]
L. Qian, Y. Xia, G. Shi, J. Wang, Y. Ye, S. Du, Electrical-thermal characterization of through packaging vias in glass interposer, IEEE Trans. Nanotechnol. 16 (2017) 901–908.
[54]
B. Vaisband, A. Maurice, C.W. Tan, B.K. Tay, E.G. Friedman, Electrical and thermal models of CNT TSV and graphite interface, IEEE Trans. Electron Dev. 65 (2018) 1880–1886.
[55]
J. Zheng, Z.Q. Su, G.Y. Wang, M. Li, W.S. Zhao, G. Wang, Circuit modeling of Cu/CNT composite through-silicon vias (TSV), in: 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, 2015, pp. 1–3.
[56]
S. Subash, M.H. Chowdhury, Mixed carbon nanotube bundles for interconnect applications, Int. J. Electron. 96 (2009) 657–671.
[57]
A. Naeemi, J.D. Meindl, Physical modeling of temperature coefficient of resistance for single- and multi-wall carbon nanotube interconnects, IEEE Electron Device Lett. 28 (2007) 135–138.
[58]
X. Li, A. Cao, Y.J. Jung, R. Vajtai, P.M. Ajayan, Bottom-up growth of carbon nanotube multilayers: unprecedented growth, Nano Lett. 5 (2005) 1997–2000.
[59]
K. Ghosh, N. Ranjan, Y.K. Verma, C.S. Tan, Graphene–CNT hetero-structure for next generation interconnects, RSC Adv. 6 (2016) 53054–53061.
[60]
H. Fiedler, M. Toader, S. Hermann, M. Rennau, R.D. Rodriguez, E. Sheremet, M. Hietschold, D.R.T. Zahn, S.E. Schulz, T. Gessner, Back-end-of-line compatible contact materials for carbon nanotube based interconnects, Microelectron. Eng. 137 (2015) 130–134.
[61]
R. Xie, C. Zhang, M.H. van der Veen, K. Arstila, T. Hantschel, B. Chen, G. Zhong, J. Robertson, Carbon nanotube growth for through silicon via application, Nanotechnology 24 (2013).
[62]
M.D. Volder, S.H. Tawfick, S.J. Park, D. Copic, Z. Zhao, W. Lu, A.J. Hart, Diverse 3D microarchitectures made by capillary forming of carbon nanotubes, Adv. Mater. 22 (2010) 4384–4389.
[63]
T. Wang, S. Chen, D. Jiang, Y. Fu, K. Jeppson, L. Ye, J. Liu, Through-silicon vias filled with densified and transferred carbon nanotube forests, IEEE Electron Device Lett. 33 (2012) 420–422.
[64]
H. Li, N. Srivastava, J.F. Mao, W.Y. Yin, K. Banerjee, Carbon nanotube vias: does ballistic electron–phonon transport imply improved performance and reliability?, IEEE Trans. Electron Dev. 58 (2011) 2689–2701.
[65]
H. Li, W.Y. Yin, K. Banerjee, J.F. Mao, Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects, IEEE Trans. Electron Dev. 55 (2008) 1328–1337.
[66]
M.S. Sarto, A. Tamburrano, Single-conductor transmission-line model of multiwall carbon nanotubes, IEEE Trans. Nanotechnol. 9 (2010) 82–92.
[67]
V.R. Kumar, B.K. Kaushik, A. Patnaik, Crosstalk noise modeling of multiwall carbon nanotube (MWCNT) interconnects using finite-difference time-domain (FDTD) technique, Microelectron. Reliab. 55 (2015) 155–163.
[68]
M. D’Amore, M.S. Sarto, A. Tamburrano, Fast transient analysis of next-generation interconnects based on carbon nanotubes, IEEE Trans. Electromagn. Compat. 52 (2010) 496–503.
[69]
M. Tang, J. Lu, J. Mao, Study on equivalent single conductor model of multi-walled carbon nanotube interconnects, in: 2012 Asia Pacific Microwave Conference Proceedings, 2012, pp. 1247–1249.
[70]
B.K. Kaushik, V.R. Kumar, M.K. Majumder, A. Alam, Modeling and Performance Analysis of CNT-Based through Silicon Vias, CRC Press, Through Silicon Vias, 2016, pp. 97–124.
[71]
W.S. Zhao, W.Y. Yin, Y.X. Guo, Electromagnetic compatibility-oriented study on through silicon single-walled carbon nanotube bundle via (TS-SWCNTBV) arrays, IEEE Trans. Electromagn. Compat. 54 (2012) 149–157.
[72]
A.E. Engin, S.R. Narasimhan, Modeling of crosstalk in through silicon vias, IEEE Trans. Electromagn. Compat. 55 (2013) 149–158.
[73]
W.S. Zhao, W.Y. Yin, X.P. Wang, X.L. Xu, Frequency- and temperature-dependent modeling of coaxial through-silicon vias for 3-D ICs, IEEE Trans. Electron Dev. 58 (2011) 3358–3368.
[74]
C.C. Sahu, S. Anand, M.K. Majumder, An analysis of the eddy effect in through-silicon vias based on cu and CNT bundles: the impact on crosstalk and power, J. Comput. Electron. 20 (2021) 2456–2470.
[75]
J. Kim, I. Hwang, Y. Kim, J. Cho, V. Sundaram, R. Tummala, J. Kim, Precise RLGC modeling and analysis of through glass via (TGV) for 2.5D/3D IC, in: 2015 IEEE 65th Electronic Components and Technology Conference, 2015, pp. 254–259.
[76]
L. Qian, G. Shi, Y. Ye, Electrical-thermal characterization of carbon nanotube based through glass vias for 3-D integration, in: 2016 IEEE 16th International Conference on Nanotechnology, 2016, pp. 663–666.
[77]
Y. Liu, Z. Zhu, X. Liu, Q. Lu, X. Yin, L. Guo, Y. Yang, Electromagnetic modeling and analysis of the tapered differential through glass vias, Microelectron. J. 83 (2019) 27–31.
[78]
C. Xu, H. Li, R. Suaya, K. Banerjee, Compact AC modeling and analysis of Cu, W, and CNT based through-silicon vias (TSVs) in 3-D ICs, in: 2009 IEEE International Electron Devices Meeting, 2009, pp. 1–4.
[79]
C. Xu, H. Li, R. Suaya, K. Banerjee, Compact AC modeling and performance analysis of through-silicon vias in 3-D ICs, IEEE Trans. Electron Dev. 57 (2010) 3405–3417.
[80]
S. Chandrakar, D. Gupta, M.K. Majumder, Impact of TSV bump and redistribution layer on crosstalk delay and power loss, memories – mater, Devices Circuits Syst. 4 (2023).
[81]
L. Qian, Y. Xia, G. Shi, Electrical modeling and analysis of a mixed carbon nanotube based differential through silicon via in 3-D integration, IEEE Trans. Nanotechnol. 15 (2016) 155–163.
[82]
J.W. Pan, K. Fu, Z.H. Cheng, W.S. Zhao, G. Wang, Modeling of crosstalk effects in carbon nanotube based differential through-silicon via array, in: 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium, 2017, pp. 1–3.
[83]
W.S. Zhao, J. Zheng, F. Liang, K. Xu, X. Chen, G. Wang, Wideband modeling and characterization of differential through-silicon vias for 3-D ICs, IEEE Trans. Electron Dev. 63 (2016) 1168–1175.
[84]
J.W. Pan, K. Fu, Q. Liu, W.S. Zhao, L. Dong, G. Wang, Modelling of crosstalk in differential through silicon vias for three-dimensional integrated circuits, IET Microwaves Antennas Propag. 13 (2019) 1529–1535.
[85]
Y. Sun, J. Luo, G. Ding, Modeling and analysis of TSV arrays with different ground and signal distributions in 2.5D/3D integration systems, J. Phys. Conf. Ser. 1087 (2018).
[86]
S.J. Bleiker, A.C. Fischer, U. Shah, N. Somjit, T. Haraldsson, N. Roxhed, J. Oberhammer, G. Stemme, F. Niklaus, High-aspect-ratio through silicon vias (TSVs) for high-frequency application fabricated by magnetic assembly of gold-coated nickel wires, IEEE Trans. Compon. Pack. Manuf. Technol. 5 (2015) 21–27.
[87]
C.H. Wu, L. Shen, H. Zhang, J. Yan, D.J. Hou, G. Zhou, Y.L. Wu, Equivalent circuit parameters of planar transmission lines with spoof surface plasmon polaritons and its application in high density circuits, Sci. Rep. 9 (2019) 18853.
[88]
S. Chandrakar, D. Gupta, M.K. Majumder, Performance analysis of cu/CNT based TSV: impact on crosstalk and power, J. Comput. Electron. 21 (2022) 1262–1274.
[89]
Y. Liang, Y. Li, Closed-form expressions for the resistance and the inductance of different profiles of through-silicon vias, IEEE Electron Device Lett. 32 (2011) 393–395.
[90]
A. Nabil, J.A. Bernardo, Y. Mac, M. Abouelatta, A. Shaker, L.F. Bouchet, H. Ragai, C. Gontrand, Electrical modeling of tapered TSV including MOS-field effect and substrate parasitics: analysis and application, Microelectron. J. 100 (2020).
[91]
F. Wang, Z. Zhu, Y. Yang, X. Liu, R. Ding, Capacitance characterization of tapered through-silicon-via considering MOS effect, Microelectron. J. 45 (2014) 205–210.
[92]
Z.A.S. Mohammed, M.A.S. Olimpo, D.P. Poenar, S. Aditya, Smoothening of scalloped DRIE trench walls, Mater. Sci. Semicond. Process. 63 (2017) 83–89.
[93]
J.S. Park, D.H. Kang, S.M. Kwak, T.S. Kim, J.H. Park, T.G. Kim, S.H. Baek, B.C. Lee, Low-temperature smoothing method of scalloped DRIE trench by post-dry etching process based on SF6 plasma, Micro Nano Syst. Lett. 8 (2020) 14.
[94]
C.M. Silvestre, V. Nguyen, H. Jansen, O. Hansen, Deep reactive ion etching of ‘grass-free’ widely-spaced periodic 2D arrays, using sacrificial structures, Microelectron. Eng. 223 (2020).
[95]
Q. Lu, Z. Zhu, Y. Yang, R. Ding, Y. Li, Electrical modeling and analysis of cu-CNT heterogeneous coaxial through-silicon vias, IEEE Trans. Nanotechnol. 16 (2017) 695–702.
[96]
K. Rajkumar, G.U. Reddy, Performance comparison between copper and carbon nanotube based TSV for 3D-integrated circuits, Mater. Today: Proc. (2023),. in press.
[97]
J. Su, R. Ma, X. Chen, L. Han, R. Yang, W. Zhang, Low-loss shielded through-silicon vias filled with multi-walled carbon nanotube bundle, Microelectron. J. 58 (2016) 83–88.
[98]
L. Yu, H. Yang, T.T. Jing, M. Xu, R. Geer, W. Wang, Electrical characterization of RF TSV for 3D multi-core and heterogeneous ICs, in: 2010 IEEE/ACM International Conference on Computer-Aided Design, 2010, pp. 686–693.
[99]
Z. Xu, J.Q. Lu, Three-dimensional coaxial through-silicon-via (TSV) design, IEEE Electron Device Lett. 33 (2012) 1441–1443.
[100]
K. Salah, Y. Ismail, Design of adiabatic TSV, SWCNT TSV, and air-gap coaxial TSV, in: 2015 IEEE International Symposium on Circuits and Systems, 2015, pp. 1953–1956.
[101]
B. Vaisband, A. Maurice, C.W. Tan, B.K. Tay, E.G. Friedman, Multi-bit CNT TSV for 3-D ICs, in: 2020 IEEE International Symposium on Circuits and Systems, 2020, pp. 1–5.
[102]
Y.F. Zhu, L. Shi, C. Zhang, X.Z. Yang, J. Liang, Preparation and properties of alumina composites modified by electric field-induced alignment of carbon nanotubes, Appl. Phys. A Mater. Sci. Process. 89 (2007) 761–767.
[103]
M. Matsumoto, R. Yamaguchi, K. Shima, M. Mukaida, M. Tomita, T. Watanabe, T. Ishida, T. Fujigaya, Control of anisotropic conduction of carbon nanotube sheets and their use as planar-type thermoelectric conversion materials, Sci. Technol. Adv. Mater. 22 (2021) 272–279.
[104]
W.S. Zhao, Q.H. Hu, Carbon nanotube through-silicon via: Modeling, design and applications, in: 2020 International Conference on Microwave and Millimeter Wave Technology, 2020, pp. 1–3.
[105]
Q.H. Hu, W.S. Zhao, D.W. Wang, G. Wang, Circuit modeling of shielded differential carbon nanotube bundle filled through-silicon vias, in: 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, 2020, pp. 1–3.
[106]
Q.H. Hu, W.S. Zhao, K. Fu, D.W. Wang, G. Wang, On the applicability of two-bit carbon nanotube through-silicon via for power distribution networks in 3-D integrated circuits, IET Circuits Devices Syst. 15 (2021) 20–26.
[107]
A. Kumar, R. Chandel, R. Dhiman, Proposal and analysis of carbon nanotube based differential multibit through glass vias, Microelectron. J. 126 (2022).
[108]
C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D.N. Futaba, M. Yumura, K. Hata, One hundred fold increase in current carrying capacity in a carbon nanotube–copper composite, Nat. Commun. 4 (2013) 2202.
[109]
L. Ladani, J. Razmi, M. Sadeghilaridjani, Fabrication of cu-CNT composite and cu using laser powder bed fusion additive manufacturing, Powders 1 (2022) 207–220.
[110]
S. Prabhu, R. Ambigai, B.K. Vinayagam, Thermal and surface analysis of copper–CNT and copper–graphene-based composite using Taguchi–Grey relational analysis, Aust. J. Mech. Eng. 19 (2021) 95–106.
[111]
K.D. Bharathi, M.R. Rahman, A.K. Yadav, B.V.R. Murthy, P.D. Bhat, Optimized heat transfer rate in Cu/CNT nano composite prepared by electrodeposition technique, ECS Adv. 2 (2023).
[112]
D.J. McIntyre, R.K. Hirschman, I. Puchades, B.J. Landi, Enhanced copper–carbon nanotube hybrid conductors with titanium adhesion layer, J. Mater. Sci. 55 (2020) 6610–6622.
[113]
M.B. Jordan, Y. Feng, S.L. Burkett, Development of seed layer for electrodeposition of copper on carbon nanotube bundles, J. Vac. Sci. Technol. B 33 (2015).
[114]
Y. Chai, K. Zhang, M. Zhang, P.C.H. Chan, M.M.F. Yuen, Carbon nanotube/copper composites for via filling and thermal management, in: 2007 Proceedings 57th Electronic Components and Technology Conference, 2007, pp. 1224–1229.
[115]
J. Lee, S. Berrada, F. Adamu-Lema, N. Nagy, V.P. Georgiev, T. Sadi, J. Liang, R. Ramos, H. Carrillo-Nunez, D. Kalita, K. Lilienthal, M. Wislicenus, R. Pandey, B. Chen, K.B.K. Teo, G. Goncalves, H. Okuno, B. Uhlig, A. Todri-Sanial, J. Dijon, A. Asenov, Understanding electromigration in Cu-CNT composite interconnects: a multiscale electrothermal simulation study, IEEE Trans. Electron Dev. 65 (2018) 3884–3892.
[116]
Y. Feng, S.L. Burkett, Modeling a copper/carbon nanotube composite for applications in electronic packaging, Comput. Mater. Sci. 97 (2015) 1–5.
[117]
K. Fu, J. Zheng, W.S. Zhao, Y. Hu, G. Wang, Analysis of transmission characteristics of copper/carbon nanotube composite through-silicon via interconnects, Chin. J. Electron. 28 (2019) 920–924.
[118]
Y. Feng, S.L. Burkett, Fabrication and electrical performance of through silicon via interconnects filled with a copper/carbon nanotube composite, J. Vac. Sci. Technol. B 33 (2015).
[119]
S. Sun, W. Mu, M. Edwards, D. Mencarelli, L. Pierantoni, Y. Fu, K. Jeppson, J. Liu, Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects, Nanotechnology 27 (2016).
[120]
G. Chen, R. Sundaram, A. Sekiguchi, K. Hata, D.N. Futaba, Through-silicon-via interposers with Cu-level electrical conductivity and Si-level thermal expansion based on carbon nanotube-Cu composites for microelectronic packaging applications, ACS Appl. Nano Mater. 4 (2021) 869–876.
[121]
M. Rao, Electrical modeling and characterization of copper/carbon nanotubes in tapered through silicon vias, in: 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems, 2017, pp. 366–371.
[122]
M. Rao, Electrical modeling of copper and mixed carbon bundles as a composite for 3D interconnect applications, in: 2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System, 2020, pp. 495–499.
[123]
Y. Nadir, H. Belahrach, A. Ghammaz, A. Naamane, M. Radouani, Modeling crosstalk effects of hybrid copper carbon nanotube interconnects using a novel accurate FDTD based method, Microelectron. J. 129 (2022).

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Microelectronic Engineering
Microelectronic Engineering  Volume 290, Issue C
Jul 2024
69 pages

Publisher

Elsevier Science Ltd.

United Kingdom

Publication History

Published: 18 July 2024

Author Tags

  1. Advanced packaging
  2. CNT
  3. TSV
  4. Analog IC
  5. Digital IC
  6. Technology review

Qualifiers

  • Review-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media