[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A flexible two dimensional force sensor using PDMS nanocomposite

Published: 25 April 2017 Publication History

Abstract

This paper presents a two dimensional force sensor fabricated on PDMS nanocomposite, with patterned carbon nanotubes (CNTs) acting as a force sensing unit. A novel fabrication method is composed of inkjet printing of CNTs onto polyethylene terephthalate (PET) and subsequent transfer of the CNT patterns to PDMS, resulting in a CNT-elastomer nanocomposite that is flexible and conductive. This approach allows patterning of a large-area conductive carbon nanotube pattern on PDMS. The achieved sheet resistance of the transferred patterns on PDMS was 1.2k/ when printed 35 times, using an office inkjet printer. The fabricated sensor changes its resistance when force is applied perpendicularly to the sensor. A two dimensional force sensor, working on the principle of compression-induced deformation was fabricated and characterized with achieved resolution of four sensing cells per cm2. Additionally, we demonstrate a two dimensional flexible force sensor capable of creating a pressure map of the applied force. Together with inkjet printing, this pattern transfer process represents a highly effective patterning technique for embedding carbon nanotubes in PDMS. Display Omitted A transfer printing technique has been developed to pattern embedded carbon nanotubes onto PDMS.Patterns show good uniformity, forming an embedded CNT network.A highly flexible two dimensional force sensor has been demonstrated, showing the pressure map applied.

References

[1]
D.J. Lipomi, M. Vosgueritchian, B.C.-K. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, Z. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes, Nat. Nanotechnol., 6 (2011) 788-792.
[2]
L. Viry, A. Levi, M. Totaro, A. Mondini, V. Mattoli, B. Mazzolai, L. Beccai, Flexible three-axial force sensor for soft and highly sensitive artificial touch, Adv. Mater., 26 (2014) 2659-2664.
[3]
W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.-M. Tao, Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications, Adv. Mater., 26 (2014) 5310-5336.
[4]
I.D. Johnston, D.K. McCluskey, C.K.L. Tan, M.C. Tracey, Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering, J. Micromech. Microeng., 24 (2014) 35017.
[5]
M.T. Byrne, Y.K. Gun'ko, Recent advances in research on carbon nanotube-polymer composites, Adv. Mater., 22 (2010) 1672-1688.
[6]
C. Park, Z. Ounaies, K.A. Watson, R.E. Crooks, J. Smith, S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison, T.L.S. Clair, Dispersion of single wall carbon nanotubes by in situ polymerization under sonication, Chem. Phys. Lett., 364 (2002) 303-308.
[7]
J. Hwang, J. Jang, K. Hong, K.N. Kim, J.H. Han, K. Shin, C.E. Park, Poly(3-hexylthiophene) wrapped carbon nanotube/poly(dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors, Carbon, 49 (2011) 106-110.
[8]
Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotubepolymer composites: chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci., 35 (2010) 357-401.
[9]
S. Park, M. Vosguerichian, Z. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics, Nanoscale, 5 (2013) 1727.
[10]
B. Kumar, H.S. Tan, N. Ramalingam, S.G. Mhaisalkar, Integration of ink jet and transfer printing for device fabrication using nanostructured materials, Carbon, 47 (2008) 321-324.
[11]
M.A. Meitl, Y. Zhou, A. Gaur, S. Jeon, M.L. Usrey, M.S. Strano, J.A. Rogers, Solution casting and transfer printing single-walled carbon nanotube films, Nano Lett., 4 (2004) 1643-1647.
[12]
T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya, Stretchable active-matrix organic light-emitting diode display using printable elastic conductors, Nat. Mater., 8 (2009) 494-499.
[13]
K. Lee, S.S. Lee, J.A. Lee, K.-C. Lee, S. Ji, Carbon nanotube film piezoresistors embedded in polymer membranes, Appl. Phys. Lett., 96 (2010) 13511.
[14]
Y. Zhou, L. Hu, G. Grner, A method of printing carbon nanotube thin films, Appl. Phys. Lett., 88 (2006) 123109.
[15]
C.-X. Liu, J.-W. Choi, Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing, J. Micromech. Microeng., 19 (2009) 85019.
[16]
R.P. Tortorich, J.-W. Choi, Inkjet printing of carbon nanotubes, Nanomaterials, 3 (2013) 453-468.
[17]
D. Kim, K.-S. Yun, Patterning of carbon nanotube films on PDMS using SU-8 microstructures, Microsyst. Technol., 19 (2013) 743-748.
[18]
R.C. Tenent, T.M. Barnes, J.D. Bergeson, A.J. Ferguson, B. To, L.M. Gedvilas, M.J. Heben, J.L. Blackburn, Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying, Adv. Mater., 21 (2009) 3210-3216.
[19]
J.M. Hoey, A. Lutfurakhmanov, D.L. Schulz, I.S. Akhatov, A review on aerosol-based direct-write and its applications for microelectronics, J. Nanotechnol., 2012 (2012) 1-22.
[20]
K.J. Loh, J.P. Lynch, B.S. Shim, N.A. Kotov, Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors, J. Intell. Mater. Syst. Struct., 19 (2008) 747-764.
[21]
B. Pinto, S. Kern, J.J. Ku-Herrera, J. Yasui, V. La Saponara, K.J. Loh, A comparative study of a self strain-monitoring carbon nanotube film and carbon fibers under flexural loading by electrical resistance changes, J. Phys. Conf. Ser., 628 (2015) 12098.
[22]
B.M. Lee, L. Wang, K.J. Loh, Characterization of carbon nanotube strain sensors using experimental tests and percolation modeling, in: Struct. Health Monit. 2015 Syst. Reliab. Verification Implement, DEStech Publications Inc., Stanford, 2015, pp. 2177-2184.
[23]
A.R. Burton, M. Kurata, H. Nishino, J.P. Lynch, Fully integrated patterned carbon nanotube strain sensors on flexible sensing skin substrates for structural health mornitoring, in: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 2016.
[24]
K. Kords, T. Mustonen, G. Tth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P.M. Ajayan, Inkjet printing of electrically conductive patterns of carbon nanotubes, Small, 2 (2006) 1021-1025.
[25]
O. Kanoun, C. Mller, A. Benchirouf, A. Sanli, T.N. Dinh, A. Al-Hamry, L. Bu, C. Gerlach, A. Bouhamed, Flexible carbon nanotube films for high performance strain sensors, Sensors, 14 (2014) 10042-10071.
[26]
A. Carlson, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers, Transfer printing techniques for materials assembly and micro/nanodevice fabrication, Adv. Mater., 24 (2012) 5284-5318.
[27]
X. Song, S. Liu, Z. Gan, Q. Lv, H. Cao, H. Yan, Controllable fabrication of carbon nanotube-polymer hybrid thin film for strain sensing, Microelectron. Eng., 86 (2009) 2330-2333.
[28]
K. Haubert, T. Drier, D. Beebe, PDMS bonding by means of a portable, low-cost corona system, Lab Chip, 6 (2006) 1548-1549.
[29]
W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583.
[30]
R.P. Tortorich, E. Song, J.-W. Choi, Inkjet-printed carbon nanotube electrodes with low sheet resistance for electrochemical sensor applications, J. Electrochem. Soc., 161 (2014) B3044-B3048.
[31]
C.-X. Liu, J.-W. Choi, Strain-dependent resistance of PDMS and carbon nanotubes composite microstructures, IEEE Trans. Nanotechnol., 9 (2010) 590-595.
[32]
C.-X. Liu, J.-W. Choi, Analyzing resistance response of embedded PDMS and carbon nanotubes composite under tensile strain, Microelectron. Eng., 117 (2014) 1-7.

Cited By

View all
  • (2021)Flexible temperature Sensor based on PDMS/CNT/Ti3C2TX for physiological temperature monitoringProceedings of the 2nd International Symposium on Artificial Intelligence for Medicine Sciences10.1145/3500931.3500987(317-321)Online publication date: 29-Oct-2021
  • (2018)High resolution polymer coated strain sensors for in-liquid operationMicroelectronic Engineering10.1016/j.mee.2018.01.020191:C(38-41)Online publication date: 5-May-2018
  1. A flexible two dimensional force sensor using PDMS nanocomposite

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Microelectronic Engineering
    Microelectronic Engineering  Volume 174, Issue C
    April 2017
    89 pages

    Publisher

    Elsevier Science Ltd.

    United Kingdom

    Publication History

    Published: 25 April 2017

    Author Tags

    1. Carbon nanotubes
    2. Flexible force sensor
    3. PDMS
    4. Pattern transfer

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 13 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Flexible temperature Sensor based on PDMS/CNT/Ti3C2TX for physiological temperature monitoringProceedings of the 2nd International Symposium on Artificial Intelligence for Medicine Sciences10.1145/3500931.3500987(317-321)Online publication date: 29-Oct-2021
    • (2018)High resolution polymer coated strain sensors for in-liquid operationMicroelectronic Engineering10.1016/j.mee.2018.01.020191:C(38-41)Online publication date: 5-May-2018

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media