[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

The immersed interface method for Helmholtz equations with degenerate diffusion

Published: 01 December 2021 Publication History

Abstract

In this paper, we consider a second-order immersed interface method for Helmholtz equations of the form ∇ ( β ∇ u ) − σ u = f with a degenerate diffusion term β. We assume that the diffusion term is discontinuous across an interface and β is zero to one side of it. The method is applied to one-dimensional domains with multiple interfaces, and two-dimensional domains with circular and straight interfaces. The numerical solution is obtained by applying away from the interface the standard centered finite differences scheme and a new scheme across of the interface. Numerical results on one- and two-dimensional domains are used to compare and demonstrate the proposed numerical method’s capabilities. In all numerical experiments, the solutions of the interface problem is second order of accuracy.

References

[1]
Espedal M.S., Karlsen K.H., Numerical solution of reservoir flow models based on large time step operator splitting algorithms, in: Filtration in Porous Media and Industrial Application, in: Lecture Notes in Math., vol. 1734, Cetraro, 1998, Springer, Berlin, 2000, pp. 9–77.
[2]
Holden H., Karlsen K., Lie K.A., Operator splitting methods for degenerat convection–diffusion equations II: Numerical examples with emphasis on reservoir simulation and sedimentation, Comput. Geosci. 4 (2000) 287–322.
[3]
Bürger R., Wendland W.L., Entropy boundary and jump conditions in the theory of sedimentation with compression, Math. methods in the appl. sci. 21 (9) (1998) 865–882.
[4]
Bustos M.C., Concha F., Bürger R., Tory E.M., Sedimentation and Thickening, in: Mathematical Modelling: Theory and Applications, vol. 8, Kluwer Academic Publishers, Dordrecht, 1999.
[5]
Uh Zapata M., Gamboa Salazar L., Itzá Balam R., Nguyen K.D., An unstructured finite-volume semi-coupled projection model for bed load sediment transport in shallow-water flows, J. Hydraul. Res. (2020) 1–14.
[6]
Uh Zapata M., Nguyen K.D., A semi-coupled projection model for the morphodynamics of fast evolving flows based on an unstructured finite-volume method, in: Estuaries and Coastal Zones in Times of Global Change, Springer, Singapore, 2020, pp. 257–275.
[7]
Shi Y.E., Ray R.K., Nguyen K.D., A projection method-based model with the exact C-property for shallow-water flows over dry and irregular bottom using unstructured finite-volume technique, Comput. Fluids 76 (2013) 178–195.
[8]
Smith F., Tsynkov S., Turkel E., Compact high order accurate schemes for the three dimensional wave equation, J. Sci. Comput. 81 (3) (2019) 1181–1209.
[9]
Sutmann G., Compact finite difference schemes of sixth order for the Helmholtz equation, J. Comput. Appl. Math. 203 (1) (2007) 15–31.
[10]
Lu B.Z., Zhou Y.C., Holst M.J., McCammon J.A., Recent progress in numerical methods for the Poisson–Boltzmann equation in biophysical applications, Commun. Comput. Phys. 3 (5) (2008) 973–1009.
[11]
Javierre E., Vuik C., Vermolen F.J., Van der Zwaag S., A comparison of numerical models for one-dimensional stefan problems, J. Comput. Appl. Math. 192 (2) (2006) 445–459.
[12]
Vermolen F.J., Javierre E., Vuik C., Zhao L., Van der Zwaag S., A three-dimensional model for particle dissolution in binary alloys, Comput. Mater. Sci. 39 (4) (2007) 767–774.
[13]
Chorin A.J., Numerical solution of the Navier–Stokes equations, Math. of comput. 22 (104) (1968) 745–762.
[14]
Benamou J.D., Desprès B., A domain decomposition method for the Helmholtz equation and related optimal control problems, J. Comput. Phys. 136 (1) (1997) 68–82.
[15]
Zou Z., Aquino W., Harari I., Nitsche’s method for Helmholtz problems with embedded interfaces, Internat. J. Numer. Methods Engrg. 110 (7) (2017) 618–636.
[16]
Tsai C.C., Young D.L., Chen C.W., Fan C.M., The method of fundamental solutions for eigenproblems in domains with and without interior holes, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2069) (2006) 1443–1466.
[17]
Chen J.T., Chen I.L., Lee Y.T., Eigensolutions of multiply connected membranes using the method of fundamental solutions, Eng. Anal. Bound. Elem. 29 (2) (2005) 166–174.
[18]
Laghrouche O., Bettess P., Perrey-Debain E., Trevelyan J., Wave interpolation finite elements for Helmholtz problems with jumps in the wave speed, Comput. Methods Appl. Mech. Engrg. 194 (2–5) (2005) 367–381.
[19]
Leveque R.J., Li Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (4) (1994) 1019–1044.
[20]
Maugeri A., Palagachev D.K., Softova L.G., Elliptic and Parabolic Equations with Discontinuous Coefficients, Wiley-VCH, 2002.
[21]
Monsurro S., Transirico M., Dirichlet problem for divergence form elliptic equations with discontinuous coefficients, Bound. Value Probl. 67 (2012).
[22]
Gustafsson B., Wahlund P., Time compact difference methods for wave propagation in discontinuous media, SIAM J. Sci. Comput. 26 (1) (2004) 272–293.
[23]
Halidias N., Elliptic problems with discontinuities, J. Math. Anal. Appl. 276 (2002) 13–27.
[24]
Liu J., Liu X., Wang Z., Existence theory for quasilinear elliptic equations via a regularization approach, Topol. Methods Nonlinear Anal. 50 (2017) 469–487.
[25]
Friedman A., Pinsky M.A., Dirichlet problem for degenerate elliptic equations, Trans. Amer. Math. Soc. 186 (1973) 359–383.
[26]
Jakobsen R., On error bounds for approximation schemes for non-convex degenerate elliptic equations, BIT 44 (2004) 269–285.
[27]
Kang S., Bui-Thanh T., Arbogast T., A hybridized discontinuous galerkin method for a linear degenerate elliptic equation arising from two-phase mixtures, SIAM J. Numer. Anal. 54 (2016) 3105–3122.
[28]
Li H., A-priori analysis and the finite method for a class of degenerate elliptic equations, Math. Comp. 78 (2009) 713–737.
[29]
Oberman A., Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems, Siam J. Numer. Anal. 44 (2006) 879–895.
[30]
Karlsen K.H., Koley U., Risebro N.H., An error estimate for the finite difference approximation to degenerate convection–diffusion equations, Numer. Math. 121 (2) (2012) 367–395.
[31]
Urev M.V., Convergence of the finite element method for an elliptic equation with strong degeneration, J. Appl. Ind. Math. 8 (2014) 411–421.
[32]
Jerez S., Parés C., Entropy stable schemes for degenerate convection-diffusion equations, SIAM J. Numer. Anal. 55 (1) (2017) 240–264.
[33]
Cho H., Han H., Lee B., Ha Y., Kang M., A second-order boundary condition capturing method for solving the elliptic interface problems on irregular domains, J. Sci. Comput. 81 (3) (2019) 217–251.
[34]
Liu X.D., Soderis T.C., Convergence of the ghost fluid method for elliptic equations with interfaces, journal, Math. Comp. 72 (2003) 1731–1746.
[35]
Hu H., Pan K., Tan Y., An interpolation matched interface and boundary method for elliptic interface problems, J. Comput. Appl. Math. 234 (2010) 73–94.
[36]
Hou S., Liu X.D., A numerical method for solving variable coefficient elliptic equation with interfaces, J. Comput. Phys. 202 (2005) 411–445.
[37]
Sethian J.A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Sciences, Cambridge University Press, 1999.
[38]
Liu X.D., Fedkiw R.P., Kang M., A boundary condition capturing method for Poisson’s equation on irregular domains, J. Comput. Phys. 160 (2000) 151–178.
[39]
Peskin C.S., The immersed boundary method, Acta Numer. 11 (2002) 479–517.
[40]
Xia K., Zhan M., Wei G., MIB Galerkin method for elliptic interface problems, J. Comput. Appl. Math. 272 (2014) 195–220.
[41]
Mu L., Wang J., Ye X., Zhao S., A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys. 325 (2016) 157–173.
[42]
Seo J.H., Mittal R., A high-order immersed boundary method for acoustic wave scattering and low-mach number flow-induced sound in complex geometries, J. Comput. Phys. 230 (2011) 1000–1019.
[43]
Moghadam A.M., Shafieefar M., Panahi R., Development of a high-order level set method: Compact conservative level set (CCLS), Comput. Fluids 129 (2016) 79–90.
[44]
Wiegmann A., Bube K.P., The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions, Siam J. Numer. Anal. 37 (2000) 827–862.
[45]
Li Z., Ito K., The immersed interface method: Numerical solutions of PDEs involving interfaces and irregular domains, Frontiers in Applied Mathematics, SIAM, 2006.
[46]
Feng X., Li Z., Simplified immersed interface methods for elliptic interface problems with straight interfaces, Numer. Methods Partial Differential Equations 28 (1) (2012) 188–203.
[47]
Uh M., Xu S., The immersed interface method for simulating two-fluid flows, Numer. Math. Theory Methods and Appl. 7 (4) (2014) 447–472.
[48]
Gillis T., Winckelmans G., Chatelain P., Fast immersed interface Poisson solver for 3D unbounded problems around arbitrary geometries, J. Comput. Phys. 354 (2018) 403–416.
[49]
Li Z.L., Ito K., Maximum principle preserving schemes for interface problems with discontinuous coefficients, SIAM J. Sci. Comput. 23 (2001) 339–361.
[50]
Li Z., Wang W., Chern I., Lai M., New formulations for interface problems in polar coordinates, SIAM J. Sci. Comput. 25 (2003) 224–245.
[51]
Li Z., Ji H., Chen X., Accurate solution and gradient computation for elliptic interface problems with variable coefficients, SIAMJ. Numer. Anal. 55 (2) (2017) 570–597.
[52]
Zhao J.P., Hou Y.R., Li Y.F., Immersed interface method for elliptic equations based on a piecewise second order polynomial, Comput. Math. Appl. 63 (2012) 957–965.
[53]
Bramble J.H., Fourth-order finite difference analogues of the Dirichlet problem for Poisson’s equation in three and four dimensions, Math. Comp. 17 (83) (1963) 217–222.
[54]
Forsythe G.E., Wasow W.R., Finite-Difference Methods for Partial Differential Equations, in: Applied Mathematics Series, Wiley, New York, 1960.
[55]
Jomaa Z., Macaskill C., The embedded finite difference method for the Poisson equation in a domain with an irregular boundary and Dirichlet boundary conditions, J. Comput. Phys. 202 (2) (2005) 488–506.
[56]
Beale T., Layton A., On the accuracy of finite difference methods for elliptic problems with interfaces, Commun. Appl. Math. Comput. Sci. 1 (1) (2007) 91–119.

Index Terms

  1. The immersed interface method for Helmholtz equations with degenerate diffusion
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image Mathematics and Computers in Simulation
            Mathematics and Computers in Simulation  Volume 190, Issue C
            Dec 2021
            1446 pages

            Publisher

            Elsevier Science Publishers B. V.

            Netherlands

            Publication History

            Published: 01 December 2021

            Author Tags

            1. Helmholtz equation
            2. Degenerated diffusion
            3. Immersed interface method
            4. Second-order of accuracy
            5. Two-dimensional
            6. Straight interfaces

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 26 Dec 2024

            Other Metrics

            Citations

            View Options

            View options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media