[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
rapid-communication

Computing k-centers of uncertain points on a real line

Published: 01 May 2022 Publication History

Abstract

In this paper we study the one-dimensional k-center problem on uncertain points. Given a set of n uncertain points each represented by a segment of its appearance on a real line, the k-center problem is computing a set Q of k points (centers) on the line to minimize the maximum of (weighted) minimum or maximum possible distances of uncertain points to their closest centers. We present O ( n log ⁡ n )-time and O ( n )-time algorithms respectively for this problem and the unweighted case.

References

[1]
S. Alipour, A. Jafari, Improvements on the k-center problem for uncertain data, in: Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, 2018, pp. 425–433.
[2]
I. Averbakh, V. Lebedev, Interval data minmax regret network optimization problems, Discrete Appl. Math. 138 (3) (2004) 289–301.
[3]
M.A. Bender, M. Farach-Colton, The lca problem revisited, in: Proceeding of the 4th Latin American Symposium on Theoretical Informatics, 2000, pp. 88–94.
[4]
D.Z. Chen, J. Li, H. Wang, Efficient algorithms for one-dimensional k-center problems, Theor. Comput. Sci. 592 (2015) 135–142.
[5]
D.Z. Chen, H. Wang, A note on searching line arrangements and applications, Inf. Process. Lett. 113 (2013) 518–521.
[6]
H. Fournier, A. Vigneron, Fitting a step function to a point set, Algorithmica 60 (1) (2011) 95–109.
[7]
G. Frederickson, Optimal algorithms for tree partitioning, in: The 2nd Annual ACM-SIAM Symposium of Discrete Algorithms (SODA), 1991, pp. 168–177.
[8]
G. Frederickson, Parametric search and locating supply centers in trees, in: The 2nd International Workshop on Algorithms and Data Structures, 1991, pp. 299–319.
[9]
U. Gupta, D. Lee, J. Leung, Efficient algorithms for interval graphs and circular-arc graphs, Networks 12 (4) (1982) 459–467.
[10]
D. Harel, R.E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J. Comput. 13 (2) (1984) 338–355.
[11]
L. Huang, J. Li, Stochastic k-center and j-flat-center problems, in: Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017, pp. 110–129.
[12]
S. Jadhav, A. Mukhopadhyay, B. Bhattacharya, An optimal algorithm for the intersection radius of a set of convex polygons, J. Algorithms 20 (2) (1996) 244–267.
[13]
Keikha, V.; Aghamolaei, S.; Mohades, A.; Ghodsi, M. (2021): Clustering geometrically-modeled points in the aggregated uncertainty model. CoRR arXiv:2111.13989.
[14]
B. Khelifa, H. Haffaf, M. Madjid, D. Llewellyn-Jones, Monitoring connectivity in wireless sensor networks, in: 2009 IEEE Symposium on Computers and Communications, 2009, pp. 507–512.
[15]
M. Löffler, M.V. Kreveld, Largest bounding box, smallest diameter, and related problems on imprecise points, Comput. Geom. 43 (4) (2010) 419–433.
[16]
N. Megiddo, K.J. Supowit, On the complexity of some common geometric location problems, SIAM J. Comput. 13 (1984) 182–196.
[17]
H. Wang, J. Zhang, One-dimensional k-center on uncertain data, Theor. Comput. Sci. 602 (2015) 114–124.
[18]
H. Wang, J. Zhang, Computing the rectilinear center of uncertain points in the plane, Int. J. Comput. Geom. Appl. 28 (2018) 271–288.
[19]
H. Wang, J. Zhang, Covering uncertain points in a tree, Algorithmica 81 (2019) 2346–2376.

Cited By

View all
  • (2024)Computing Largest Minimum Color-Spanning Intervals of Imprecise PointsLATIN 2024: Theoretical Informatics10.1007/978-3-031-55598-5_6(81-96)Online publication date: 18-Mar-2024

Index Terms

  1. Computing k-centers of uncertain points on a real line
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image Operations Research Letters
            Operations Research Letters  Volume 50, Issue 3
            May 2022
            143 pages

            Publisher

            Elsevier Science Publishers B. V.

            Netherlands

            Publication History

            Published: 01 May 2022

            Author Tags

            1. Facility location
            2. k-Center
            3. Uncertain points
            4. Algorithms

            Qualifiers

            • Rapid-communication

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 11 Dec 2024

            Other Metrics

            Citations

            Cited By

            View all
            • (2024)Computing Largest Minimum Color-Spanning Intervals of Imprecise PointsLATIN 2024: Theoretical Informatics10.1007/978-3-031-55598-5_6(81-96)Online publication date: 18-Mar-2024

            View Options

            View options

            Login options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media