[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Online region computations for Euler diagrams with relaxed drawing conventions

Published: 01 February 2017 Publication History

Abstract

Euler diagrams are an accessible and effective visualisation of data involving simple set-theoretic relationships. Efficient algorithms to quickly compute the abstract regions of an Euler diagram upon curve addition and removal have previously been developed (the single marked point approach, SMPA), but a strict set of drawing conventions (called well-formedness conditions) were enforced, meaning that some abstract diagrams are not representable as concrete diagrams. We present a new methodology (the multiple marked point approach, MMPA) enabling online region computation for Euler diagrams under the relaxation of the drawing convention that zones must be connected regions. Furthermore, we indicate how to extend the methods to deal with the relaxation of any of the drawing conventions, with the use of concurrent line segments case being of particular importance. We provide complexity analysis and compare the MMPA with the SMPA. We show that these methods are theoretically no worse than other comparators, whilst our methods apply to any case, and are likely to be faster in practise due to their online nature. The machinery developed for the concurrency case could be of use in Euler diagram drawing techniques (in the context of the Euler Graph), and in computer graphics (e.g. the development of an advanced variation of a winged edge data structure that deals with concurrency). The algorithms are presented for generic curves; specialisations such as utilising fixed geometric shapes for curves may occur in applications which can enhance capabilities for fast computations of the algorithms' input structures. We provide an implementation of these algorithms, utilising ellipses, and provide time-based experimental data for benchmarking purposes. HighlightsMethodology (MMPA) for efficient online region computations for generalised Euler diagrams.Capable of drawing convention relaxations, including concurrency and disconnected zones.Complexity analysis demonstrates trade-off with non-generalised Euler diagram method.Implementation realizing algorithms for specialized case of ellipse based diagrams.Experimental data provided for benchmarking purposes.

References

[1]
P. Bottoni, G. Costagliola and A. Fish, Euler diagram encodings, in: Proceedings of Diagrams '12, LNAI 752, 2012, pp. 148162.
[2]
B.G. Baumgart, A polyhedron representation for computer vision, in: Proceedings national computer conference and exposition (AFIPS '75), ACM, New York, NY, USA, 1975, pp. 589596.
[3]
T. Cao, K. Mamakani, F.Ruskey, Symmetric Monotone Venn Diagrams with Seven Curves, in: Proceedings of the Fifth International Conference on Fun with Algorithms, LNCS 6099, 2010, pp. 331342.
[4]
S.-K. Chang, E. Jungert, A spatial/temporal query language for multiple data sources in a heterogeneous information system environment, Int. J. Coop. Inf. Syst., 7 (1998) 167-186.
[5]
S.-K. Chang, G. Costagliola, E. Jungert, F. Orciuoli, Querying distributed multimedia database data sources in information fusion applications, in: Journal of IEEE transaction on Multimedia, 2004.
[6]
S.-K. Chang, W. Dai, S. Hughes, P. Lakkavaram, X. Li, Evolutionary Query Processing, Fusion and Visualization, in: Proceedings of International Conference on Distributed Multimedia Systems, 2002.
[7]
S.-K. Chang, Query Morphing for Information Fusion, in: Proceedings of IMAGE: Learning, Understanding, Information Retrieval, Medical, Cagliari, Italy, June 910, 2003.
[8]
S.C. Chow, Generating and Drawing Area-Proportional Euler and Venn Diagrams, {Ph.D. thesis}, University of Victoria, 2007.
[9]
R. Clark, Fast Zone Discrimination, in: Proceedings VLL 2007, CEUR, volume 274, 2007, pp. 4154.
[10]
G. Cordasco, R. De Chiara, A. Fish, Interactive Visual Classification with Euler Diagrams, in: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing VL/HCC, IEEE Press, 2009, pp. 185192.
[11]
G. Cordasco, R. De Chiara, A. Fish, V. Scarano, The Online Abstraction Problem for Euler Diagrams, in: Proceedings of Euler diagrams 2012, CEUR 854, 2012, pp. 6276.
[12]
G. Cordasco, R. De Chiara, A. Fish, V. Scarano, FunEuler: an Euler Diagram based Interface Enhanced with Region-based Functionalities, in: Proceedings of Euler diagrams 2012, CEUR 854, 2012, pp. 107121.
[13]
G. Cordasco, R. De Chiara, A. Fish, Efficient on-line algorithms for Euler diagram region computation, Comput. Geom.: Theory Appl. (CGTA), 44 (2011) 52-68.
[14]
R. De Chiara, U. Erra, V. Scarano, VennFS: a Venn diagram file manager, in: Proceedings of Information Visualisation, IEEE Computer Society, 2003, pp 120126.
[15]
R. De Chiara, G. Cordasco, A. Fish, Concrete Euler Diagrams manipulation library GitHub Repository, https://github.com/rosdec/euler
[16]
H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel, M. Sharir, Arrangements of curves in the planetopology, combinatorics, and algorithms, in: Theoretical Computer Science, Vol. 92 N. 2, Elsevier Science Publishers Ltd. 1992, pp. 319336.
[17]
H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag Inc., New York, 1987.
[18]
L. Euler, Lettres a une princesse dallemagne sur divers sujets de physique et de philosophie, Letters, 2 (1775) 102-108.
[19]
A. Fish, J. Flower, J. Howse, The semantics of augmented constraint diagrams, J. Vis. Lang. Comput., 16 (2005) 541-573.
[20]
A. Fish, Euler diagram transformations, Graph Transform. Vis. Model. Tech., ECEASST, 18 (2009) 1-17.
[21]
J. Flower, A. Fish, J. Howse, Euler diagram generation, J. Vis. Lang. Comput., 19 (2008) 675-694.
[22]
C.A. Gurr, Effective diagrammatic communication syntactic, semantic and pragmatic issues, J. Vis. Lang. Comput., 10 (1999) 317-342.
[23]
C.M. Hoffmann, The problems of accuracy and robustness in geometric computation, Computer, 22 (1989) 31-40.
[24]
J. Howse, F. Molina, J. Taylor, S. Kent, J. Gil, Spider diagramsa diagrammatic reasoning system, J. Vis. Lang. Comput., 12 (2001) 299-324.
[25]
S. Kent, Constraint diagrams: visualizing invariants in object oriented models, in: Proceedings of OOPSLA97, ACM Press, 1997, pp. 327341.
[26]
H. Kestler, A. Muller, T. Gress, M. Buchholz, Generalized Venn diagrams: a new method for visualizing complex genetic set relations, J. Bioinforma., 21 (2005) 1592-1595.
[27]
K. Mamakani, W. Myrvold, F. Ruskey, Generating simple convex Venn diagrams, J. Discret. Algorithms, 16 (2012) 270-286.
[28]
N. Henry Riche, T. Dwyer, Untangling Euler diagrams, IEEE Trans. Vis. Comput. Graph., 16 (2010) 1090-1099.
[29]
P. Rodgers, L. Zhang, A.Fish, General Euler Diagram Generation, in: Proceedings of the 5th International Conference on Diagrams 2008, Vol. 5223 of LNAI, Springer-Verlag, 2008, pp. 1327.
[30]
F. Ruskey, A survey of Venn diagrams, Electronic Journal of Combinatorics. www.combinatorics.org/Surveys/ds5/VennEJC.html, 1997.
[31]
A.Shimojima, Inferential and expressive capacities of graphical representations: survey and some generalizations, in: Proceedings of the 3rd International Conference on the Theory and Application of Diagrams, Vol. 2980 of LNAI, Springer-Verlag, 2004, pp. 1821.
[32]
P. Simonetto, D. Auber, D. Archambault, Fully automatic visualisation of overlapping sets, Comput. Graph. Forum (EuroVis09), 28 (2009) 967-974.
[33]
G. Stapleton, J. Masthoff, J. Flower, A. Fish, J. Southern, Automated theorem proving in Euler diagrams systems, J. Autom. Reason., 39 (2007) 431-470.
[34]
G. Stapleton, P. Rodgers, J. Howse, L. Zhang, Inductively generating Euler diagrams, IEEE Trans. Vis. Comput. Graph., 17 (2011) 88-100.
[35]
G. Stapleton, B. Plimmer, A. Delaney, P. Rodgers, Combining sketching and traditional diagram editing tools, ACM Trans. Intell. Syst. Technol., 6 (2015) 10.
[36]
N. Swoboda, G. Allwein, Using DAG transformations to verify Euler/Venn homogeneous and euler/venn fol heterogeneous rules of inference, J. Softw. Syst. Model., 3 (2004) 136-149.
[37]
J. Thivre, M. Viaud, A. Verroust-Blondet, Using Euler Diagrams in Traditional Library Environments, in: Euler Diagrams 2004, Vol. 134 of ENTCS, 2005, pp. 189202.
[38]
J. Venn, On the Diagrammatic and Mechanical Representation of Propositions and Reasonings, Phil. Mag, 1880.
[39]
A. Verroust, M.-L.Viaud, Ensuring the Drawability of Extended Euler Diagrams for up to eight Sets, in: Proceedings of the 3rd International Conference on the Theory and Application of Diagrams, volume 2980 of LNAI, Cambridge, UK, Springer, 2004, pp. 128141.
[40]
M. Wang, B. Plimmer, P. Schmieder, G. Stapleton, P. Rodgers, A. Delaney SketchSet: Creating Euler diagrams using pen or mouse, in: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing VL/HCC, IEEE Press, 2011, pp. 7582.
[41]
Li. Xin, S.K.Chang, An interactive visual query interface on spatial/temporal data, in: Proceedings of the Tenth International Conference on Distributed Multimedia Systems, 2004.
[42]
K. Weiler, Polygon comparison using a graph representation, Computer Graphics (SIGGRAPH '80 Proceedings), 14(3):1018, July 1980.
[43]
R.J. Wilson, Introduction to Graph Theory, Longman, 1996.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Visual Languages and Computing
Journal of Visual Languages and Computing  Volume 38, Issue C
February 2017
106 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 February 2017

Author Tags

  1. Euler diagrams
  2. Interactive Diagram Construction
  3. On-line algorithms
  4. Region computation

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media