[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Intensity-guided edge-preserving depth upsampling through weighted L0 gradient minimization

Published: 01 January 2017 Publication History

Abstract

Display Omitted Intensity-guided edge-preserving depth upsampling.Weighted L0 gradient minimization.Alternating minimization and half-quadratic splitting.Suppressing edge blurring and texture copying artifacts. Depth is an important visual cue to perceive real-world scenes. Although a time-of-flight (ToF) depth camera can provide depth information in dynamic scenes, captured depth images are often noisy and of low resolution. In this paper, we propose an intensity-guided edge-preserving depth upsampling method through weighted L0 gradient minimization to enhance both resolution and visual quality of depth images. Guided by the high-resolution intensity image, we perform optimization to preserve boundaries of objects. We apply L0 gradient to the regularization term, and compute its weight from both intensity and depth images. We optimize the objective function using alternating minimization and half-quadratic splitting. Experimental results on Middlebury 2005, 2014, and real-world scene datasets demonstrate that the proposed method produces boundary-preserving depth upsampling results and outperforms state-of-the-art ones in terms of accuracy.

References

[1]
D. Scharstein, R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, Int. J. Comput. Vis., 47 (2002) 7-42.
[2]
P. Thanusutiyabhorn, P. Kanongchaiyos, W. Mohammed, Image-based 3D laser scanner, in: Proc. Int. Conf. Elect. Eng./Electron., Comput., Telecommun., Inform. Technol., 2011, pp. 975978.
[3]
A. Kolb, E. Barth, R. Koch, R. Larsen, Time-of-flight cameras in computer graphics, Comput. Graph. Forum, 29 (2010) 141-159.
[4]
S. Gokturk, H. Yalcin, C. Bamji, A time-of-flight depth sensor-system description, issues and solutions, in: Proc. IEEE CVPR Workshop, 2004, pp. 35.
[5]
Available: <http://www.mesa-imaging.ch/>.
[6]
K. Guo, X. Yang, H. Zha, W. Lin, S. Yu, Multiscale semilocal interpolation with antialiasing, IEEE Trans. Image Process., 21 (2012) 1176-1190.
[7]
X. Jiang, B. Sheng, W. Lin, P. Li, L. Ma, R. Shen, Antialiased super-resolution with parallel high-frequency synthesis, Multimed. Tools Appl. (2015) 1-18.
[8]
K. Guo, X. Yang, W. Lin, R. Zhang, S. Yu, Learning-based super-resolution method with a combining of both global and local constraints, IET Image Process., 6 (2012) 337-344.
[9]
C. Dong, C.C. Loy, K. He, X. Tang, Learning a Deep Convolutional Network for Image Super-Resolution, in: Proc. ECCV, 2014, pp. 184-199.
[10]
G. Zhong, L. Yu, P. Zhou, Edge-preserving single depth image interpolation, in: Proc. IEEE VCIP, 2013, pp. 1-6.
[11]
S. Schuon, C. Theobalt, J. Davis, S. Thrun, High-quality scanning using time-of-flight depth superresolution, in: Proc. IEEE CVPR Workshop, 2008, pp. 1-7.
[12]
O.M. Aodha, N.D.F. Campbell, A. Nair, G.J. Brostow, Patch based synthesis for single depth image super-resolution, in: Proc. ECCV Workshop, 2012, pp. 71-84.
[13]
J. Xie, R. Feris, S.-S. Yu, M.-T. Sun, Joint Super Resolution and Denoising From a Single Depth Image, IEEE Trans. Multimedia, 17 (2015) 1525-1537.
[14]
J. Xie, R. Feris, M.-T. Sun, Edge-guided single depth image super resolution, IEEE Trans. Image Process., 25 (2016) 428-438.
[15]
T.-W. Hui, C.C. Loy, X. Tang, Depth map super resolution by deep multi-scale guidance, in: Proc. ECCV, 2016, pp. 353369.
[16]
J. Kopf, M.F. Cohen, D. Lischinski, M. Uyttendaele, Joint bilateral upsampling, ACM Trans. Graph., 26 (2007) 96:1-96:5.
[17]
A.K. Riemens, O.P. Gangwal, R-P.M. Berretty, Multistep joint bilateral depth upsampling, in: Proc. SPIE, 2009, pp. 1-12.
[18]
Q. Yang, R. Yang, J. Davis, D. Nister, Spatial-depth super resolution for range images, in: Proc. IEEE CVPR, 2007, pp. 1-8.
[19]
Q. Yang, K.-H. Tan, B. Culbertson, J. Apostolopoulos, Fusion of active and passive sensors for Fast 3-D capture, in: Proc. IEEE Int. Workshop MMSP, 2010, pp. 6974.
[20]
D. Chan, H. Buisman, C. Theobalt, S. Thrun, A noise-aware filter for real-time depth upsampling, in: Proc. ECCV Workshop, 2008, pp. 112.
[21]
F. Garcia, D. Aouada, B. Mirbach, T. Solignac, B. Ottersten, A new multi-lateral filter for real-time depth enhancement, in: Proc. AVSS, 2011, pp. 42-47.
[22]
Q. Yang, Fusion of median and bilateral filtering for range image upsampling, IEEE Trans. Image Process., 22 (2013) 4841-4852.
[23]
K. He, J. Sun, X. Tang, Guided image filtering, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013) 1397-1409.
[24]
D. Min, J. Lu, M. Do, Depth video enhancement based on weighted mode filtering, IEEE Trans. Image Process., 21 (2012) 1176-1190.
[25]
X. Zuo, J. Zheng, A refined weighted mode filtering approach for depth video enhancement, in: Proc. ICVRV, 2013, pp. 138144.
[26]
O. Choi, S.-W. Jung, A consensus-driven approach for structure and texture aware depth map upsampling, IEEE Trans. Image Process., 23 (2014) 3321-3335.
[27]
Z. Ma, K. He, Y. Wei, J. Sun, E. Wu, Constant time weighted median filtering for stereo matching and beyond, in: Proc. IEEE ICCV, 2013, pp. 49-56.
[28]
Q. Yang, Stereo matching using tree filtering, IEEE Trans. Pattern Anal. Mach. Intell., 37 (2015) 834-846.
[29]
L. Dai, F. Zhang, X. Mei, X. Zhang, Fast minimax path-based joint depth interpolation, IEEE Signal Process. Lett., 22 (2015) 623-627.
[30]
M.-Y. Liu, O. Tuzel, Y. Taguchi, Joint geodesic upsampling of depth images, in: Proc. IEEE CVPR, 2013, pp. 169-176.
[31]
J. Diebel, S. Thrun, An application of Markov random fields to range sensing, in: Proc. NIPS, 2005, pp. 291-298.
[32]
J. Lu, D. Min, R. Pahwa, M. Do, A revisit to MRF-based depth map super-resolution and enhancement, in: Proc. IEEE ICASSP, 2011, pp. 985-988.
[33]
D. Kim, K.-J. Yoon, High-quality depth map up-sampling robust to edge noise of range sensors, in: Proc. IEEE ICIP, 2012, pp. 553-556.
[34]
J. Zhu, L. Wang, J. Gao, R. Yang, Spatial-temporal fusion for high accuracy depth maps using dynamic MRFs, IEEE Trans. Pattern Anal. Mach. Intell., 32 (2010) 899-909.
[35]
J. Park, H. Kim, Y.-W. Tai, M.S. Brown, I. Kweon, High quality depth map upsampling for 3D-TOF cameras, in: Proc. IEEE ICCV, 2011, pp. 1623-1630.
[36]
L. Dai, H. Wang, X. Mai, X. Zhang, Depth map upsampling via compressive sensing, in: Proc. ACPR, 2013, pp. 90-94.
[37]
X. Gong, J. Ren, B. Lai, C. Yan, H. Qian, Guided depth upsampling via a cosparse analysis model, in: Proc. IEEE CVPR, 2014, pp. 738-745.
[38]
J. Yang, X. Ye, K. Li, C. Hou, Y. Wang, Color-guided depth recovery from rgb-d data using an adaptive auto-regressive model, IEEE Trans. Image Process., 23 (2014) 3443-3458.
[39]
S. Schwarz, M. Sjstrm, R. Olsson, A weighted optimization approach to time-of-flight sensor fusion, IEEE Trans. Image Process., 23 (2014) 214-225.
[40]
D. Ferstl, C. Reinbacher, R. Ranftl, M. Rther, H. Bischof, Image guided depth upsampling using anisotropic total generalized variation, in: Proc. IEEE ICCV, 2013, pp. 993-1000.
[41]
A. Zomet, S. Peleg, Multi-sensor super-resolution, in: Proc. IEEE WACV, 2002, pp. 27-31.
[42]
C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, in: Proc. IEEE ICCV, 1998, pp. 836-846.
[43]
D. Barash, A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation, IEEE Trans. Pattern Anal. Mach. Intell., 24 (2002) 844-847.
[44]
P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990) 629-639.
[45]
P. Saint-Marc, J.S. Chen, G. Medioni, Adaptive smoothing: a general tool for early vision, IEEE Trans. Pattern Anal. Mach. Intell., 13 (1991) 514-529.
[46]
G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, K. Toyama, Digital photography with flash and no-flash image pairs, ACM Trans. Graph., 23 (2007) 664-672.
[47]
P. Choudhury, J. Tumblin, The trilateral filter for high contrast images and meshes, in: Proc. Eurograph. Symp. Rendering, 2003, pp. 186196.
[48]
C. Zhang, W. Lin, W. Li, B. Zhou, J. Xie, J. Li, Improved image deblurring based on salient-region segmentation, Signal Process.: Image Commun., 28 (2013) 1171-1186.
[49]
Z. Li, J. Zheng, Z. Zhu, W. Yao, S. Wu, Weighted guided image filtering, IEEE Trans. Image Process., 24 (2015) 120-129.
[50]
L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, Nonlinear Phenom., 60 (1992) 259-268.
[51]
Z. Farbman, R. Fattal, D. Lischinski, R. Szeliski, Edge-preserving decompositions for multi-scale tone and detail manipulation, ACM Trans. Graph., 27 (2008) 249-256.
[52]
L. Xu, C.W. Lu, Y. Xu, J. Jia, Image smoothing via L0 gradient minimization, ACM Trans. Graph., 30 (2011) 174:1-174:12.
[53]
R.C. Gonzalez, R.E. Woods, Digital Image Processing, Prentice-Hall, Upper Saddle River, NJ, USA, 2002.
[54]
L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for rapid scene analysis, IEEE Trans. Pattern Anal. Mach. Intell., 20 (1998) 1254-1259.
[55]
D. Scharstein, C. Pal, Learning conditional random fields for stereo, in: Proc. CVPR, 2007, pp. 1-8.
[56]
D. Scharstein, H. Hirschmller, Y. Kitajima, G. Krathwohl, N. Nesic, X. Wang, P. Westling, High-resolution stereo datasets with subpixel-accurate ground truth, in: Proc. GCPR, 2014, pp. 31-42.
[57]
X. Li, M.T. Orchard, New edge-directed interpolation, IEEE Trans. Image Process., 10 (2001) 1251-1257.
[58]
J. Sun, J. Sun, Z. Xu, Image super-resolution using gradient profile prior, in: Proc. IEEE CVPR, 2008, pp. 1-8.
[59]
Available: <http://docs.nvidia.com/cuda/thrust/index.html>.

Cited By

View all
  • (2020)Structure-preserving image smoothing with semantic cuesThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-020-01950-136:10-12(2017-2027)Online publication date: 1-Oct-2020
  • (2020)Depth image upsampling based on guided filter with low gradient minimizationThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-019-01748-w36:7(1411-1422)Online publication date: 1-Jul-2020
  • (2020)Texture-guided depth upsampling using Bregman split: a clustering graph-based approachThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-018-1611-x36:2(333-359)Online publication date: 1-Feb-2020
  • Show More Cited By
  1. Intensity-guided edge-preserving depth upsampling through weighted L0 gradient minimization

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Journal of Visual Communication and Image Representation
      Journal of Visual Communication and Image Representation  Volume 42, Issue C
      January 2017
      180 pages

      Publisher

      Academic Press, Inc.

      United States

      Publication History

      Published: 01 January 2017

      Author Tags

      1. Alternating minimization
      2. Depth upsampling
      3. Edge-preserving
      4. Half-quadratic splitting
      5. Weighted L0 sparsity

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 11 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2020)Structure-preserving image smoothing with semantic cuesThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-020-01950-136:10-12(2017-2027)Online publication date: 1-Oct-2020
      • (2020)Depth image upsampling based on guided filter with low gradient minimizationThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-019-01748-w36:7(1411-1422)Online publication date: 1-Jul-2020
      • (2020)Texture-guided depth upsampling using Bregman split: a clustering graph-based approachThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-018-1611-x36:2(333-359)Online publication date: 1-Feb-2020
      • (2018)Depth Super-Resolution Using Joint Adaptive Weighted Least Squares And Patching Gradient2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)10.1109/ICASSP.2018.8462667(1458-1462)Online publication date: 15-Apr-2018

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media