[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Arithmetic of D-algebraic functions

Published: 08 August 2024 Publication History

Abstract

We are concerned with the arithmetic of solutions to ordinary or partial nonlinear differential equations which are algebraic in the indeterminates and their derivatives. We call these solutions D-algebraic functions, and their equations are algebraic (ordinary or partial) differential equations (ADEs). The general purpose is to find ADEs whose solutions contain specified rational expressions of solutions to given ADEs. For univariate D-algebraic functions, we show how to derive an ADE of smallest possible order. In the multivariate case, we introduce a general algorithm for these computations and derive conclusions on the order bound of the resulting algebraic PDE. Using our accompanying Maple software, we discuss applications in physics, statistics, and symbolic integration.

References

[1]
Ait El Manssour, R.; Sattelberger, A.L.; Teguia Tabuguia, B. (2023): D-algebraic functions. arXiv preprint arXiv:2301.02512.
[2]
T. Bächler, V. Gerdt, M. Lange-Hegermann, D. Robertz, Algorithmic Thomas decomposition of algebraic and differential systems, J. Symb. Comput. 47 (10) (2012) 1233–1266.
[3]
N. Balakrishnan, Handbook of the Logistic Distribution, Marcel Dekker, New York, 1992.
[4]
D. Bayer, M. Stillman, A theorem on refining division orders by the reverse lexicographic order, Duke Math. J. 55 (2) (1987) 321–328.
[5]
Boulier, F. : DifferentialAlgebra project: a C library for differential elimination. Available at https://codeberg.org/francois.boulier/DifferentialAlgebra.
[6]
F. Boulier, D. Lazard, F. Ollivier, M. Petitot, Representation for the radical of a finitely generated differential ideal, in: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, 1995, pp. 158–166.
[7]
S. Chen, M. Kauers, Some open problems related to creative telescoping, J. Syst. Sci. Complex. 30 (1) (2017) 154–172.
[8]
Chyzak, F. : Mgfun project: a Maple package for systems of holonomic functions. Available at https://specfun.inria.fr/chyzak/mgfun.html.
[9]
F. Chyzak, An extension of Zeilberger's fast algorithm to general holonomic functions, Discrete Math. 217 (1–3) (2000) 115–134.
[10]
J. Denef, L. Lipshitz, Power series solutions of algebraic differential equations, Math. Ann. 267 (1984) 213–238.
[11]
J. van Der Hoeven, Computing with D-algebraic power series, Appl. Algebra Eng. Commun. Comput. 30 (1) (2019) 17–49.
[12]
R. Dong, C. Goodbrake, H.A. Harrington, G. Pogudin, Differential elimination for dynamical models via projections with applications to structural identifiability, SIAM J. Appl. Algebra Geom. 7 (1) (2023) 194–235.
[13]
Dzhamay, A.; Filipuk, G.; Ligȩza, A.; Stokes, A. (2021): Different Hamiltonians for the Painlevé equation and their identification using a geometric approach. arXiv preprint arXiv:2109.06428.
[14]
R. Ehrenborg, G.C. Rota, Apolarity and canonical forms for homogeneous polynomials, Eur. J. Comb. 14 (3) (1993) 157–181.
[15]
J. Freitag, O. León Sánchez, W. Li, Effective definability of Kolchin polynomials, Proc. Am. Math. Soc. 148 (4) (2020) 1455–1466.
[16]
R. Fueter, G. Pólya, Rationale Abzählung der Gitterpunkte, Vierteljschr. Naturforsch. Ges. Zürich 58 (1923) 380–386.
[17]
H. Hong, A. Ovchinnikov, G. Pogudin, C. Yap, Global identifiability of differential models, Commun. Pure Appl. Math. 73 (9) (2020) 1831–1879.
[18]
E. Hubert, Notes on triangular sets and triangulation-decomposition algorithms I: polynomial systems, in: Symbolic and Numerical Scientific Computation: Second International Conference, SNSC 2001, Hagenberg, Austria, September 12–14, 2001, Springer, 2003, pp. 1–39. Revised Papers.
[19]
A. Jiménez-Pastor, V. Pillwein, M.F. Singer, Some structural results on D n-finite functions, Adv. Appl. Math. 117 (2020).
[20]
M. Kauers, M. Mezzarobba, Multivariate ore polynomials in SageMath, ACM Commun. Comput. Algebra 53 (2) (2019) 57–60.
[21]
M. Kauers, P. Paule, The Concrete Tetrahedron. Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates, Springer-Verlag, Wien, 2011,.
[22]
M. Kauers, R. Yatchak, Walks in the quarter plane with multiple steps, in: Proceedings of FPSAC'15, DMTCS, 2015, pp. 25–36.
[23]
W. Koepf, Computer Algebra: An Algorithm-Oriented Introduction, Springer Nature, 2021.
[24]
Koepf, W.; Teguia Tabuguia, B. : FPS: a Maple package for symbolic computations with power series and linear PDEs. Available at http://www.mathematik.uni-kassel.de/~bteguia/FPS_webpage/FPS.htm.
[25]
E.R. Kolchin, Differential Algebra & Algebraic Groups, Academic Press, 1973.
[26]
C. Koutschan, Advanced Applications of the Holonomic Systems Approach, Ph.D. thesis RISC, Johannes Kepler University, Linz, September 2009.
[27]
A. Levin, Bivariate Kolchin-type dimension polynomials of non-reflexive prime difference-differential ideals. the case of one translation, J. Symb. Comput. 102 (2021) 173–188.
[28]
L. Lipshitz, L.A. Rubel, A gap theorem for power series solutions of algebraic differential equations, Am. J. Math. 108 (5) (1986) 1193–1213.
[29]
L. Lipshitz, L.A. Rubel, A gap theorem for differentially algebraic power series, in: D.V. Chudnovsky, G.V. Chudnovsky, H. Cohn, M.B. Nathanson (Eds.), Number Theory, Springer, New York, New York, NY, 1991, pp. 211–214.
[30]
E. Maillet, Sur les séries divergentes et les équations différentielles, Ann. Sci. Éc. Norm. Supér. 20 (3) (1903) 487–518.
[31]
M. Michałek, B. Sturmfels, Invitation to Nonlinear Algebra, vol. 211, American Mathematical Soc., 2021.
[32]
E.H. Moore, Concerning transcendentally transcendental functions, Math. Ann. 48 (1–2) (1896) 49–74.
[33]
D. Pavlov, G. Pogudin, On realizing differential-algebraic equations by rational dynamical systems, in: Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, 2022, pp. 119–128.
[34]
Pogudin, G. : Differential algebra. Lecture notes. Available at http://www.lix.polytechnique.fr/Labo/Gleb.POGUDIN/files/da_notes.pdf.
[35]
K. Raschel, M. Bousquet-Mélou, O. Bernardi, Counting quadrant walks via Tutte's invariant method, Discrete Math. Theor. Comput. Sci. (2020).
[36]
J.F. Ritt, Differential Algebra, vol. 33, American Mathematical Soc., 1950.
[37]
D. Robertz, Formal Algorithmic Elimination for PDEs, vol. 2121, Springer, 2014.
[38]
Ruskey, F. (2003): Combinatorial generation. Book available at https://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf Preliminary working draft. University of Victoria. Victoria, BC, Canada.
[39]
B. Salvy, P. Zimmermann, GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable, ACM Trans. Math. Softw. 20 (2) (1994) 163–177.
[40]
R.P. Stanley, Differentiably finite power series, Eur. J. Comb. 1 (2) (1980) 175–188.
[41]
Teguia Tabuguia, Teguia : NLDE: NonLinear algebra and differential equations: source and lattest update. Available at https://github.com/T3gu1a/D-algebraic-functions.
[42]
Teguia Tabuguia, B. (2022): Guessing with quadratic differential equations. Software Demo at ISSAC'22. arXiv preprint. arXiv:2207.01037.
[43]
B. Teguia Tabuguia, Operations for D-algebraic functions, ACM Commun. Comput. Algebra 57 (2) (2023) 51–56.
[44]
B. Teguia Tabuguia, W. Koepf, On the representation of non-holonomic univariate power series, Maple Trans. 2 (1) (2022).
[45]
G. Teschl, Ordinary Differential Equations and Dynamical Systems, vol. 140, American Mathematical Soc., 2012.
[46]
D. Zeilberger, The method of creative telescoping, J. Symb. Comput. 11 (3) (1991) 195–204.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Symbolic Computation
Journal of Symbolic Computation  Volume 126, Issue C
Jan 2025
158 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 08 August 2024

Author Tags

  1. Gröbner bases
  2. Triangular set
  3. Differential algebra
  4. Symbolic computation
  5. Ranking

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media