[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Solving degree, last fall degree, and related invariants

Published: 01 January 2023 Publication History

Abstract

In this paper we study and relate several invariants connected to the solving degree of a polynomial system. This provides a rigorous framework for estimating the complexity of solving a system of polynomial equations via Gröbner bases methods. Our main results include a connection between the solving degree and the last fall degree and one between the degree of regularity and the Castelnuovo–Mumford regularity.

References

[1]
M. Bardet, Étude des systémes algébriques surdéterminés. Applications aux codes correcteurs et á la cryptographie, Ph.D. thesis Université Paris 6, 2004.
[2]
M. Bardet, J.-C. Faugère, B. Salvy, On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations, in: ICPPSS International Conference on Polynomial System Solving, 2004.
[3]
G. Caviglia, H.T. Hà, J. Herzog, M. Kummini, N. Terai, N.V. Trung, Depth and regularity modulo a principal ideal, J. Algebraic Comb. 49 (2019) 1–20.
[4]
Caminata, A.; Ceria, M.; Gorla, E. (2021): The complexity of solving Weil restriction systems. arXiv:2112.10506.
[5]
A. Caminata, E. Gorla, Solving multivariate polynomial systems and an invariant from commutative algebra, in: Arithmetic of Finite Fields, in: Lecture Notes in Comput. Sci., vol. 12542, Springer, Cham, 2021, pp. 3–36.
[6]
A. Caminata, E. Gorla, The Complexity of MinRank, Association for Women in Mathematics Series, vol. 24, Springer, Cham, 2021, pp. 163–169.
[7]
N. Courtois, A. Klimov, J. Patarin, A. Shamir, Efficient algorithms for solving overdefined systems of multivariate polynomial equations, in: Proceedings of International Conference on the Theory and Application of Cryptographic Techniques (EUROCRYPT), in: Lecture Notes in Computer Science, vol. 1807, Springer, Bruges, Belgium, 2000, pp. 392–407.
[8]
J. Ding, J. Buchmann, M. Mohamed, W. Moahmed, R.P. Weinmann, MutantXL, in: Proceedings of the 1st International Conference on Symbolic Computation and Cryptography (SCC08), Beijing, China, LMIB, 2008, pp. 16–22.
[9]
J. Ding, A. Petzoldt, D. Schmidt, Multivariate public key cryptosystems, in: Adv. Information Security, Springer, New York, NY, 2020.
[10]
J. Ding, D. Schmidt, Solving degree and degree of regularity for polynomial systems over finite fields, in: Number Theory and Cryptography, in: Lecture Notes in Comput. Sci., vol. 8260, Springer, Heidelberg, 2013, pp. 34–49.
[11]
V. Dubois, N. Gama, The Degree of Regularity of HFE Systems, International Conference on the Theory and Application of Cryptology and Information Security, Springer, Berlin, Heidelberg, 2010.
[12]
J.C. Faugère, A new efficient algorithm for computing Gröbner bases (F4), J. Pure Appl. Algebra 139 (1999) 61–88.
[13]
J.C. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to zero (F5), in: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC '02, New York, NY, USA, 2002, pp. 75–83.
[14]
P. Gaudry, Index calculus for Abelian varieties of small dimension and the elliptic curve discrete logarithm problem, J. Symb. Comput. 44 (2009) 1690–1702.
[15]
E. Gorla, D. Müller, C. Petit, Stronger bounds on the cost of computing Gröbner bases for HFE systems, J. Symb. Comput. 109 (2022) 386–398.
[16]
M.-D.A. Huang, M. Kosters, Y. Yang, S.L. Yeo, On the last fall degree of zero-dimensional Weil descent systems, J. Symb. Comput. 87 (2018) 207–226.
[17]
M.-D.A. Huang, M. Kosters, S.L. Yeo, Last Fall Degree, HFE, and Weil Descent Attacks on ECDLP, in: Advances in Cryptology – CRYPTO 2015, Springer-Verlag, 2015, pp. 581–600.
[18]
Huang, Y.-J.; Petit, C.; Shinohara, N.; Takagi, T. (2015): On generalized first fall degree assumptions. https://eprint.iacr.org/2015/358.
[19]
D. Lazard, Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations, in: Computer Algebra, in: Lecture Notes in Comput. Sci., vol. 162, London, 1983, Springer, Berlin, 1983, pp. 146–156.
[20]
I. Semaev, A. Tenti, Probabilistic analysis on Macaulay matrices over finite fields and complexity of constructing Gröbner bases, J. Algebra 565 (2021) 651–674.
[21]
A. Tenti, Sufficiently overdetermined random polynomial systems behave like semiregular ones, PhD Thesis University of Bergen, 2019, available at https://hdl.handle.net/1956/21158.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Symbolic Computation
Journal of Symbolic Computation  Volume 114, Issue C
Jan 2023
376 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 January 2023

Author Tags

  1. 13P10
  2. 13P15
  3. 13P25
  4. 68W30

Author Tags

  1. Degree of regularity
  2. Castelnuovo–Mumford regularity
  3. Gröbner bases
  4. Last fall degree
  5. Solving degree

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media