[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

The first rational Chebyshev knots

Published: 01 December 2010 Publication History

Abstract

A Chebyshev knot C(a,b,c, ) is a knot which has a parametrization of the form x(t)=Ta(t);y(t)=Tb(t);z(t)=Tc(t+ ), where a,b,c are integers, Tn(t) is the Chebyshev polynomial of degree n and R. We show that any rational knot is a Chebyshev knot with a=3 and also with a=4. For every a,b,c integers (a=3,4 and a, b coprime), we describe an algorithm that gives all Chebyshev knots C(a,b,c, ). We deduce the list of minimal Chebyshev representations of rational knots with 10 or fewer crossings.

References

[1]
]]Sampling Lissajous and Fourier knots. Experiment. Math. v18 i4. 481-497.
[2]
]]Lissajous knots. J. Knot Theory Ramifications. v3 i2. 121-140.
[3]
]]Algorithms in real algebraic geometry. In: Algorithms and Computations in Mathematics, vol. 10. Springer.
[4]
]]. In: Graduate Texts in Mathematics, Springer.
[5]
]]An enumeration of knots and links. In: Leech, J. (Ed.), Computational Problems in Abstract Algebra, Pergamon Press, Oxford, England. pp. 329-358.
[6]
]]Durfee, A., O'Shea, D., 2006. Polynomial knots. arXiv:math/0612803v1.
[7]
]]The growth of the number of prime knots. Math. Proc. Cambridge Philos. Soc. v102. 303-315.
[8]
]]. In: A.M.S. Student Mathematical Library, vol. 15.
[9]
]]A Gröbner free alternative for solving polynomial systems. J. Complexity. v17 i1. 154-211.
[10]
]]Lissajous knots and knots with Lissajous projections. Kobe J. Math. v24 i2.
[11]
]]Lissajous knots and billiard knots. Banach Center Publications. v42. 145-163.
[12]
]]Koseleff, P.-V., Pecker, D., 2008. Chebyshev knots. J. Knot Theory Ramifications (in press-a).
[13]
]]Koseleff, P.-V., Pecker, D., 2009. Chebyshev diagrams for rational knots. arXiv:0906.4083.
[14]
]]Koseleff, P.-V., Pecker, D., Chebyshev diagrams for two-bridge knots. Geom. Dedicata, 25 p. (in press-b).
[15]
]]Koseleff, P.-V., Pecker, D., Rouillier, F., 2010. Computing Chebyshev knots diagrams. arXiv:1001.5192.
[16]
]]There are infinitely many Lissajous knots. Manuscripta Math. v93. 29-37.
[17]
]]Lamm, C., 1999. Cylinder knots and symmetric unions (Zylinder-knoten und symmetrische Vereinigungen), Ph.D. Thesis, Bonner Mathematische Schriften 321, Bonn.
[18]
]]Polynomial representation for long knots. Int. J. Math. Anal. v3 i7. 325-337.
[19]
]]Knot Theory and its Applications. Birkhauser, Boston.
[20]
]]Counting real zeros in the multivariate case. Progr. Math. v109 i6. 61-76.
[21]
]]Solving zero-dimensional systems through the rational univariate representation. J. Appl. Algebra in Engrg. Comm. Comput. v9 i5. 433-461.
[22]
]]Efficient isolation of polynomial real roots. J. Comput. Appl. Math. v162 i1. 33-50.
[23]
]]Knoten mit zwei Bruecken. Math. Z. v65. 133-170.
[24]
]]Polynomial representation of knots. Tôhoku Math. J. v44. 11-17.
[25]
]]Cohomology of knot spaces. In: Advances Soviet Maths, vol. 1.

Cited By

View all
  • (2018)Computing Chebyshev knot diagramsJournal of Symbolic Computation10.1016/j.jsc.2017.04.00186:C(120-141)Online publication date: 1-May-2018
  • (2015)On the Sign of a Trigonometric ExpressionProceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2755996.2756664(259-266)Online publication date: 24-Jun-2015

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Symbolic Computation
Journal of Symbolic Computation  Volume 45, Issue 12
December, 2010
221 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 December 2010

Author Tags

  1. Algorithms
  2. Chebyshev curves
  3. Computer algebra
  4. Polynomial curves
  5. Rational knots
  6. Real root isolation
  7. Two-bridge knots

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2018)Computing Chebyshev knot diagramsJournal of Symbolic Computation10.1016/j.jsc.2017.04.00186:C(120-141)Online publication date: 1-May-2018
  • (2015)On the Sign of a Trigonometric ExpressionProceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2755996.2756664(259-266)Online publication date: 24-Jun-2015

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media