[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

On immiscibility preservation conditions of material interfaces in the generic five-equation model

Published: 08 August 2024 Publication History

Abstract

Interfaces separating pure materials and mixtures tend to be severely smeared with interface-capturing methods for compressible multi-material flows, necessitating the requirement of various interface-sharpening techniques. However, these techniques have various problems related to consistency, conservation, and thermodynamic compatibility. In this work, we derive a general theoretical formulation of interface-sharpening techniques for the generic five-equation model. This theoretical formulation is not only conservative in mass, momentum, and total energy but also asymptotically compatible with the thermodynamic mixture laws of the mixture model upon which it is constructed, and is independent of various specific numerical algorithms. We further propose a general numerical method to solve this theoretical formulation. The proposed method is consistent and conservative, and it prevents spurious errors at the interfaces. Examples of one- and two-dimensional multimaterial compressible flow problems, including shocks and interfaces, are considered to verify the analysis and demonstrate the efficiency of the method.

Highlights

We first derived a general theoretical formulation of interface-sharpening techniques for the generic five-equation model.
A multi-material artificial compression method (MMACM) is proposed.
The proposed method can handle more complicated equations of state, and materials that is larger than two.

References

[1]
Z. He, B. Tian, Y. Zhang, F. Gao, Characteristic-based and interface-sharpening algorithm for high-order simulations of immiscible compressible multi-material flows, J. Comput. Phys. 333 (2017) 247–268.
[2]
Z. He, H. Liu, L. Li, Generic five-equation model for compressible multi-material flows and its corresponding high-fidelity numerical algorithms, J. Comput. Phys. 487 (2023).
[3]
R. Saurel, C. Pantano, Diffuse-interface capturing methods for compressible two-phase flows, Annu. Rev. Fluid Mech. 50 (2018) 105–130.
[4]
V. Maltsev, M. Skote, P. Tsoutsanis, High-order methods for diffuse-interface models in compressible multi-medium flows: a review, Phys. Fluids 34 (2022).
[5]
K. So, X. Hu, N. Adams, Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, J. Comput. Phys. 231 (2012) 4304–4323.
[6]
R.K. Shukla, C. Pantano, J.B. Freund, An interface capturing method for the simulation of multi-phase compressible flows, J. Comput. Phys. 229 (2010) 7411–7439.
[7]
R. Shukla, Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows, J. Comput. Phys. 276 (2014) 508–540.
[8]
K.-M. Shyue, F. Xiao, An Eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic THINC approach, J. Comput. Phys. 268 (2014) 326–354.
[9]
M. Friess, S. Kokh, Simulation of sharp interface multi-material flows involving an arbitrary number of components through an extended five-equation model, J. Comput. Phys. 273 (2014) 488–519.
[10]
A. Chiapolino, R. Saurel, B. Nkonga, Sharpening diffuse interfaces with compressible fluids on unstructured meshes, J. Comput. Phys. 2017 (2017) 389–417.
[11]
S. Kokh, F. Lagoutière, An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model, J. Comput. Phys. 229 (2010) 2773–2809.
[12]
X. Deng, S. Inaba, B. Xie, K.-M. Shyue, F. Xiao, High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces, J. Comput. Phys. 371 (2018) 945–966.
[13]
Z.-W. He, B.-L. Tian, L. Li, H.-F. Li, Y.-S. Zhang, B.-Q. Meng, High-order numerical simulation method for compressible multi-material flow problems, (in Chinese) Acta Aerodyn. Sin. 39 (2021) 177–190.
[14]
K. So, X. Hu, N. Adams, Anti-diffusion method for interface steepening in two-phase incompressible flow, J. Comput. Phys. 230 (2011) 5155–5177.
[15]
J. Boris, D. Book, Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works, J. Comput. Phys. 11 (1973) 38–69.
[16]
M. Breuß, T. Brox, T. Sonar, J. Weickert, Stabilized nonlinear inverse diffusion for approximating hyperbolic PDEs, scale space and PDE methods in computer vision, Proceedings 3459 (2005) 536–547.
[17]
A. Tiwari, J.B. Freund, C. Pantano, A diffuse interface model with immiscibility preservation, J. Comput. Phys. 252 (2013) 290–309.
[18]
B. Després, F. Lagoutière, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, J. Sci. Comput. 16 (2001) 479–524.
[19]
G. Allaire, S. Clerc, S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys. 181 (2002) 577–616.
[20]
J. Massoni, R. Saurel, B. Nkonga, R. Abgrall, Some models and Eulerian methods for interface problems between compressible fluids with heat transfer, (in French) Int. J. Heat Mass Transf. 45 (2002) 1287–1307.
[21]
A. Bernard-Champmartin, F.D. Vuyst, A low diffusive Lagrange-remap scheme for the simulation of violent air-water free-surface flows, J. Comput. Phys. 274 (2014) 19–49.
[22]
E. Olsson, G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (2005) 225–246.
[23]
E. Olsson, G. Kreiss, S. Zahedi, A conservative level set method for two phase flow II, J. Comput. Phys. 225 (2007) 785–807.
[24]
T. Wacławczyk, A consistent solution of the re-initialization equation in the conservative level-set method, J. Comput. Phys. 299 (2015) 487–525.
[25]
R. Chiodi, O. Desjardins, A reformulation of the conservative level set reinitialization equation for accurate and robust simulation of complex multiphase flows, J. Comput. Phys. 343 (2017) 186–200.
[26]
S. Mirjalili, C.B. Ivey, A. Mani, A conservative diffuse interface method for two-phase flows with provable boundedness properties, J. Comput. Phys. 401 (2020).
[27]
S.S. Jain, Accurate conservative phase-field method for simulation of two-phase flows, J. Comput. Phys. 469 (2022).
[28]
S. Parameswaran, J. Mandal, A stable interface-preserving reinitialization equation for conservative level set method, Eur. J. Mech. B, Fluids 98 (2023) 40–63.
[29]
A. Kapila, R. Menikoff, J. Bdzil, S. Son, D. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Phys. Fluids 13 (2001) 3002.
[30]
Y. Sun, C. Beckermann, Sharp interface tracking using the phase-field equation, J. Comput. Phys. 220 (2007) 626–653.
[31]
P.H. Chiu, Y.T. Lin, A conservative phase field method for solving incompressible two-phase flows, J. Comput. Phys. 230 (2011) 185–204.
[32]
S.S. Jain, A. Mani, P. Moin, A conservative diffuse-interface method for compressible two-phase flows, J. Comput. Phys. 418 (2020).
[33]
Z. Huang, E. Johnsen, A consistent and conservative Phase-Field method for compressible multiphase flows with shocks, J. Comput. Phys. 488 (2023).
[34]
R.J. LeVeque, Wave propagation algorithms for multidimensional hyperbolic systems, J. Comput. Phys. 131 (1997) 327–353.
[35]
D.I. Ketcheson, M. Parsani, R. LeVeque, High-order wave propagation algorithms for hyperbolic systems, SIAM J. Sci. Comput. 35 (2013) A351–A377.
[36]
F. Xiao, Y. Honma, T. Kono, A simple algebraic interface capturing scheme using hyperbolic tangent function, Int. J. Numer. Methods Fluids 48 (2005) 1023–1040.
[37]
Z. Sun, S. Inaba, F. Xiao, Boundary Variation Diminishing (BVD) reconstruction: a new approach to improve Godunov schemes, J. Comput. Phys. 322 (2016) 309–325.
[38]
B. van Leer, Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov's method, J. Comput. Phys. 32 (1979) 101–136.
[39]
A. Harten, The artificial compression method for computation of shocks and contact discontinuities. I. Single conservation laws, Commun. Pure Appl. Math. 30 (1977) 611–638.
[40]
K. Lie, S. Noelle, One the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws, SIAM J. Sci. Comput. 24 (2003) 1157–1174.
[41]
A. Harten, The artificial compression method for computation of shocks and contact discontinuities: III. Self-adjusting hybrid schemes, Math. Comput. 32 (1978) 363–389.
[42]
A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 (1983) 357–393.
[43]
H. Yang, An artificial compression method for ENO schemes: the slope modification method, J. Comput. Phys. 89 (1990) 125–160.
[44]
A. Murrone, H. Guillard, A five equation reduced model for compressible two phase flow problems, J. Comput. Phys. 202 (2005) 664–698.
[45]
F. Harlow, A. Amsden, Fluid Dynamics, Technical Report LA-4700 Los Alamos National Laboratory, 1971.
[46]
E. Han, M. Hantke, S. Müller, Efficient and robust relaxation procedures for multi-component mixtures including phase transition, J. Comput. Phys. 338 (2017) 217–239.
[47]
Z. He, Y. Ruan, Y. Yu, B. Tian, X. Feng, Self-adjusting steepness-based schemes that preserve discontinuous structures in compressible flows, J. Comput. Phys. 463 (2022).
[48]
Y. Ruan, B. Tian, X. Zhang, Z. He, On the supremum of the steepness parameter in self-adjusting discontinuity-preserving schemes, Comput. Fluids 245 (2022).
[49]
T. Flåtten, A. Morin, S.T. Munkejord, Wave propagation in multicomponent flow models, SIAM J. Appl. Math. 70 (8) (2010) 2861–2882.
[50]
G.H. Miller, E.G. Puckett, A high-order Godunov method for multiple condensed phases, J. Comput. Phys. 128 (1996) 134–164.
[51]
J. Kreeft, B. Koren, A new formulation of Kapila's five-equation model for compressible two-fluid flow, and its numerical treatment, J. Comput. Phys. 229 (2010) 6220–6242.
[52]
S. Le Martelot, S. Saurel, B. Nkonga, Towards the direct numerical simulation of nucleate boiling flows, Int. J. Multiph. Flow 66 (2014) 62–78.
[53]
A.D. Demou, N. Scapin, M. Pelanti, L. Brandt, A pressure-based diffuse interface method for low-Mach multiphase flows with mass transfer, J. Comput. Phys. 448 (2022).
[54]
R. Saurel, P. Boivin, O. Le Métayer, A general formulation for cavitating, boiling and evaporating flows, Comput. Fluids 128 (2016) 53–64.
[55]
M. Pelanti, Arbitrary-rate relaxation techniques for the numerical modeling of compressible two-phase flows with heat and mass transfer, Int. J. Multiph. Flow 153 (2022).
[56]
R.J.R. Williams, Fully-conservative contact-capturing schemes for multi-material advection, J. Comput. Phys. 398 (2019).
[57]
D.W. Schwendeman, A.K. Kapila, W.D. Henshaw, A comparative study of two macro-scale models of condensed-phase explosives, IMA J. Appl. Math. 77 (2012) 2–17.
[58]
G. Linga, T. Flåtten, A hierarchy of non-equilibrium two-phase flow models, ESAIM Proc. Surv. 66 (2019) 109–143.
[59]
R. Abgrall, How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys. 125 (1996) 150–160.
[60]
E. Johnsen, T. Colonius, Implementation of WENO schemes in compressible multicomponent flow problems, J. Comput. Phys. 219 (2006) 715–732.
[61]
C. Zhang, I. Menshov, L. Wang, Z. Shen, Diffuse interface relaxation model for two-phase compressible flows with diffusion processes, J. Comput. Phys. 466 (2022).
[62]
S.H. Christiansen, H.Z. Munthe-Kaas, B. Owren, Topics in structure-preserving discretization, Acta Numer. 20 (2011) 1–119.
[63]
B. Koren, R. Abgrall, P. Bochev, J. Frank, B. Perot, Physics-compatible numerical methods, J. Comput. Phys. 257 (2014) 1039.
[64]
B. Larrouturou, How to preserve the mass fractions positivity when computing compressible multi-component flows, J. Comput. Phys. 95 (1991) 59–84.
[65]
Z.-W. He, L. Li, Y.-S. Zhang, B.-L. Tian, Consistent implementation of characteristic flux-split based finite difference method for compressible multi-material gas flows, Comput. Fluids 168 (2018) 190–200.
[66]
S. Alahyari Beig, E. Johnsen, Maintaining interface equilibrium conditions in compressible multiphase flows using interface capturing, J. Comput. Phys. 302 (2015) 548–566.
[67]
Z.-W. He, Y.-S. Zhang, X.-L. Li, B.-L. Tian, Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities, J. Comput. Phys. 300 (2015) 269–287.
[68]
Z.-W. He, Y.-S. Zhang, X.-L. Li, L. Li, B.-L. Tian, Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities, II, Int. J. Numer. Methods Fluids 80 (2016) 306–316.
[69]
M. Berger, A. Giuliani, A state redistribution algorithm for finite volume schemes on cut cell meshes, J. Comput. Phys. 428 (2021).
[70]
W. Ni, Q. Zeng, Y. Ruan, Z. He, A novel steepness-adjustable harmonic volume-of-fluid method for interface capturing, J. Comput. Phys. 501 (2024).
[71]
J.E. Pilliod Jr., E.G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys. 199 (2004) 465–502.
[72]
S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (2001) 89–112.
[73]
S. Gottlieb, C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Math. Comput. 67 (1998) 73–85.
[74]
R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
[75]
E.F. Toro, M. Spruce, W. Speares, Restoration of the contact surface in the HLL-Riemann solver, Shock Waves 4 (1994) 25–34.
[76]
E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, third edition, Springer-Verlag, 2009.
[77]
Z.-W. He, Y.-S. Zhang, F.-J. Gao, X.-L. Li, B.-L. Tian, An improved accurate monotonicity-preserving scheme for the Euler equations, Comput. Fluids 140 (2016) 1–10.
[78]
H. Tan, T. Liu, A note on the conservative schemes for the Euler equations, J. Comput. Phys. 218 (2006) 451–459.
[79]
K. Schmidmayer, S.H. Bryngelson, T. Colonius, An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics, J. Comput. Phys. 402 (2020).
[80]
J.-Y. Lin, Y. Shen, H. Ding, N.-S. Liu, X.-Y. Lu, Simulation of compressible two-phase flows with topology change of fluid-fluid interface by a robust cut-cell method, J. Comput. Phys. 328 (2017) 140–159.
[81]
J. Haas, B. Sturtevant, Interaction of a weak shock wave with cylindrical and spherical gas inhomogeneities, J. Fluid Mech. 390 (1987) 41–76.
[82]
R.R. Nourgaliev, T.N. Dinh, T.G. Theofanous, Adaptive characteristics-based matching for compressible multifluid dynamics, J. Comput. Phys. 213 (2006) 500–529.
[83]
T. Flåtten, H. Lund, Relaxation two-phase flow models and the subcharacteristic condition, Math. Models Methods Appl. Sci. 21 (12) (2011) 2379–2407.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational Physics
Journal of Computational Physics  Volume 513, Issue C
Sep 2024
1004 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 08 August 2024

Author Tags

  1. Interface-sharpening technique
  2. Diffuse interface method
  3. Consistent and conservative schemes
  4. Compressible multimaterial flows
  5. Generic five-equation model

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media