[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Navier-Stokes characteristic boundary conditions for high-enthalpy compressible flows in thermochemical non-equilibrium

Published: 18 July 2024 Publication History

Abstract

This fundamental study presents Navier-Stokes characteristic boundary conditions (NSCBCs) for high-enthalpy hypersonic flows in thermochemical non-equilibrium. In particular, the relevant locally one-dimensional inviscid (LODI) relations are derived within a two-temperature framework for high-enthalpy hypersonic flows undergoing finite-rate thermochemical processes, including air dissociation and vibrational relaxation. Using these LODI relations, a set of NSCBCs are proposed and later demonstrated in canonical test cases, including the interaction of homogeneous isotropic turbulence with a shock wave subject to high-enthalpy thermochemical non-equilibrium effects.

Highlights

Presents Navier-Stokes characteristic boundary conditions (NSCBCs) for hypersonic flows in thermochemical non-equilibrium.
NSCBCs yield domain-insensitive solutions for canonical test cases subject to both chemical and vibrational relaxation.
For subsonic high-enthalpy flows, the NSCBCs enable accurate enforcement of the outflow static pressure.
NSCBCs are shown to facilitate numerical solution of shock/turbulence interaction in thermochemical non-equilibrium.

References

[1]
C. Park, Nonequilibrium Hypersonic Aerothermodynamics, Wiley, New York, 1990.
[2]
S.P. Sharma, W.M. Huo, C. Park, Rate parameters for coupled vibration-dissociation in a generalized ssh approximation, J. Thermophys. Heat Transf. 6 (1992) 9–21.
[3]
P.V. Marrone, C.E. Treanor, Chemical relaxation with preferential dissociation from excited vibrational levels, Phys. Fluids 6 (1963) 1215–1221.
[4]
C.E. Treanor, P.V. Marrone, Effect of dissociation on the rate of vibrational relaxation, Phys. Fluids 5 (1962) 1022–1026.
[5]
R.S. Chaudhry, I.D. Boyd, G.V. Candler, Vehicle-Scale Simulations of Hypersonic Flows Using the MMT Chemical Kinetics Model, AIAA Aviation Forum, 2020.
[6]
G.V. Candler, Rate effects in hypersonic flows, Annu. Rev. Fluid Mech. 51 (2019) 379–402.
[7]
S. Lee, S.K. Lele, P. Moin, Direct numerical simulation of isotropic turbulence interacting with a weak shock wave, J. Fluid Mech. 251 (1993) 533–562.
[8]
S. Pirozzoli, F. Grasso, Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at m=2.25, Phys. Fluids 18 (2006).
[9]
M. Wu, M. Pino-Martin, Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data, J. Fluid Mech. 594 (2008) 71–83.
[10]
J. Larsson, I. Bermejo-Moreno, S.K. Lele, Reynolds- and Mach-number effects in canonical shock–turbulence interaction, J. Fluid Mech. 717 (2013) 293–321.
[11]
L. Fu, M. Karp, S.T. Bose, P. Moin, J. Urzay, Shock-induced heating and transition to turbulence in a hypersonic boundary layer, J. Fluid Mech. 909 (2021) A8.
[12]
L. Duan, M.P. Martin, Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy, J. Fluid Mech. 684 (2011) 25–59.
[13]
M. Di Renzo, J. Urzay, Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies, J. Fluid Mech. 912 (2021) A29.
[14]
D. Passiatore, L. Sciacovelli, P. Cinnella, G. Pascazio, Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers, J. Fluid Mech. 941 (2022) A21.
[15]
K.W. Thompson, Time dependent boundary conditions for hyperbolic systems, J. Comput. Phys. 68 (1987) 1–24.
[16]
K.W. Thompson, Time-dependent boundary conditions for hyperbolic systems, ii, J. Comput. Phys. 89 (1990) 439–461.
[17]
T.J. Poinsot, S.K. Lele, Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys. 101 (1992) 104–129.
[18]
G. Lodato, P. Domingo, L. Vervisch, Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows, J. Comput. Phys. 227 (2008) 5105–5143.
[19]
M. Baum, T. Poinsot, D. Thévenin, Accurate boundary conditions for multicomponent reactive flows, J. Comput. Phys. 116 (1995) 247–261.
[20]
N. Okong'o, J. Bellan, Consistent boundary conditions for multicomponent real gas mixtures based on characteristic waves, J. Comput. Phys. 176 (2002) 330–344.
[21]
Y. Ju, J. Yuan, H. Kobayashi, G. Masuya, On the non-reflective boundary conditions for chemically reactive flows, AIAA Paper #2003-3969 2003.
[22]
A.T.C.S. Yoo, Y. Wang, H.G. Im, Characteristic boundary conditions for direct simulations of turbulent counterflow flames, Combust. Theory Model. 9 (2005) 617–646.
[23]
A. Coussement, O. Gicquel, J. Caudal, B. Fiorina, G. Degrez, Three-dimensional boundary conditions for numerical simulations of reactive compressible flows with complex thermochemistry, J. Comput. Phys. 231 (2012) 5571–5611.
[24]
P. Hammerling, J.D. Teare, B. Kivel, Theory of radiation from luminous shock waves in nitrogen, Phys. Fluids 2 (1959) 422–426.
[25]
C. Park, Review of chemical-kinetic problems of future nasa missions. I - Earth entries, J. Thermophys. Heat Transf. 7 (1993) 385–398.
[26]
P. Gnoffo, R. Gupta, J. Shinn, L. R. Center, U. S. N. Aeronautics, S. A. O. of Management, Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium, NASA technical paper, National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division 1989.
[27]
C.F. Curtiss, J.O. Hirschfelder, Transport properties of multicomponent gas mixtures, J. Chem. Phys. 17 (1949) 550–555.
[28]
T.P. Coffee, J.M. Heimerl, Transport algorithms for premixed, laminar steady-state flames, Combust. Flame 43 (1981) 273–289.
[29]
A. Ern, V. Giovangigli, Multicomponent Transport Algorithms, Lecture Notes in Physics Monographs, Springer, Berlin, Heidelberg, 1994.
[30]
C. Park, A review of reaction rates in high temperature air, AIAA Paper #AIAA-89-1740 1989.
[31]
C. Park, R.L. Jaffe, H. Partridge, Chemical-kinetic parameters of hyperbolic Earth entry, J. Thermophys. Heat Transf. 15 (2001) 76–90.
[32]
L.C. Scalabrin, Numerical simulation of weakly ionized hypersonic flow over reentry capsules, Ph.D. thesis University of Michigan, 2007.
[33]
W.T. Maier, J.T. Needels, C. Garbacz, F. Morgado, J.J. Alonso, M. Fossati, Su2-nemo: an open-source framework for high-Mach nonequilibrium multi-species flows, Aerospace 8 (2021) 193.
[34]
S.F. Gimelshein, I.J. Wysong, A.J. Fangman, D.A. Andrienko, O.V. Kunova, E.V. Kustova, F. Morgado, C. Garbacz, M. Fossati, K.M. Hanquist, Kinetic and continuum modeling of high-temperature air relaxation, J. Thermophys. Heat Transf. 36 (2022) 870–893.
[35]
C.R. Wilke, A viscosity equation for gas mixtures, J. Chem. Phys. 18 (1950) 517–519.
[36]
W.G. Vincenti, C.H. Krüger, Introduction to Physical Gas Dynamics, Wiley, New York, 1965.
[37]
L. Landau, E. Teller, Zur Theorie der Schalldispersion, Phys. Z. Sowjetunion 10 (1) (1936) 34–43.
[38]
R.C. Millikan, D.R. White, Systematics of vibrational relaxation, J. Chem. Phys. 39 (1963) 3209–3213.
[39]
G.V. Candler, R.W. MacCormack, Computation of weakly ionized hypersonic flows in thermochemical nonequilibrium, J. Thermophys. Heat Transf. 5 (1991) 266–273.
[40]
M. Di Renzo, L. Fu, J. Urzay, HTR solver: an open-source exascale-oriented task-based multi-gpu high-order code for hypersonic aerothermodynamics, Comput. Phys. Commun. 255 (2020).
[41]
J. Urzay, M. Di Renzo, Engineering Aspects of Hypersonic Turbulent Flows at Suborbital Enthalpies, Annual Research Briefs, Center for Turbulence Research, Stanford University, 2020, pp. 7–32.
[42]
C.T. Williams, M. Di Renzo, J. Urzay, Two-Temperature Extension of the Htr Solver for Hypersonic Turbulent Flows in Thermochemical Nonequilibrium, Annual Research Briefs, Center for Turbulence Research, Stanford University, 2021, pp. 95–107.
[43]
C.T. Williams, M. Di Renzo, P. Moin, Computational Framework for Direct Numerical Simulation of Shock- Turbulence Interaction in Thermochemical Nonequilibrium, Annual Research Briefs, Center for Turbulence Research, Stanford University, 2022, pp. 203–216.
[44]
L. Fu, X.Y. Hu, N.A. Adams, A family of high-order targeted eno schemes for compressible-fluid simulations, J. Comput. Phys. 305 (2016) 333–359.
[45]
M. Di Renzo, S. Pirozzoli, Htr-1.2 solver: hypersonic task-based research solver version 1.2, Comput. Phys. Commun. 261 (2021).
[46]
C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii, J. Comput. Phys. 83 (1989) 32–78.
[47]
K. Mahesh, S.K. Lele, P. Moin, The influence of entropy fluctuations on the interaction of turbulence with a shock wave, J. Fluid Mech. 334 (1997) 353–379.
[48]
S. Lee, S.K. Lele, P. Moin, Interaction of isotropic turbulence with shock waves: effect of shock strength, J. Fluid Mech. 340 (1997) 225–247.
[49]
J. Larsson, S.K. Lele, Direct numerical simulation of canonical shock/turbulence interaction, Phys. Fluids 21 (2009).
[50]
C. Huete, A. Cuadra, M. Vera, J. Urzay, Thermochemical effects on hypersonic shock waves interacting with weak turbulence, Phys. Fluids 33 (2021).
[51]
J. Urzay, Supersonic combustion in air-breathing propulsion systems for hypersonic flight, Annu. Rev. Fluid Mech. 50 (2018) 593–627.
[52]
T. Passot, A. Pouquet, Numerical simulation of compressible homogeneous flows in the turbulent regime, J. Fluid Mech. 181 (1987) 441–466.
[53]
M. Bassenne, J. Urzay, G.I. Park, P. Moin, Constant-energetics physical-space forcing methods for improved convergence to homogeneous-isotropic turbulence with application to particle-laden flows, Phys. Fluids 28 (2016).
[54]
J.B. Freund, Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound, AIAA J. 35 (1997) 740–742.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational Physics
Journal of Computational Physics  Volume 509, Issue C
Jul 2024
579 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 18 July 2024

Author Tags

  1. Hypersonic turbulence
  2. Thermochemical non-equilibrium
  3. Characteristic boundary conditions
  4. Shock-turbulence interaction

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media