[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Uncertainty quantification in autoencoders predictions: : Applications in aerodynamics

Published: 17 July 2024 Publication History

Abstract

A data-driven model is compared to classical equation-driven approaches to investigate its ability to predict quantity of interest and their uncertainty when studying airfoil aerodynamics. The focus is on autoencoders and the effect of uncertainties due to the architecture, the hyperparamaters and the choice of the training data (internal or model-form uncertainties). Comparisons with a Gaussian Process regression approach clearly illustrate the autoencoder advantage in extracting useful information on the prediction confidence even in the absence of ground truth data. Simulations accounting for internal uncertainties are also compared to the impact of the variability induced by uncertain operating conditions (external uncertainties) showing the importance of accounting for the total uncertainty when establishing prediction confidence.

Highlights

Proposed autoencoder ensemble distinguishes between different sources of uncertainty.
The approach correctly identifies regions of low prediction confidence.
The standard deviation of the ensemble is a reasonable proxy for the actual error.

References

[1]
K. Lee, K.T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, J. Comput. Phys. 404 (2020),.
[2]
I.H.A. Abbott, A.E. von Doenhoff, Theory of Wing Sections, Dover Publications Inc., 1959.
[3]
S.B. Pope, Turbulent Flows, Cambridge University Press, 2000,.
[4]
M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U.R. Acharya, V. Makarenkov, S. Nahavandi, A review of uncertainty quantification in deep learning: techniques, applications and challenges, Inf. Fusion 76 (2021) 243–297,.
[5]
H.M.D. Kabir, A. Khosravi, M.A. Hosen, S. Nahavandi, Neural network-based uncertainty quantification: a survey of methodologies and applications, IEEE Access 6 (2018) 36218–36234,.
[6]
A.F. Psaros, X. Meng, Z. Zou, L. Guo, G.E. Karniadakis, Uncertainty quantification in scientific machine learning: methods, metrics, and comparisons, J. Comput. Phys. 477 (2023),.
[7]
D.P. Kingma, M. Welling, An introduction to variational autoencoders, Found. Trends Mach. Learn. 12 (4) (2019) 307–392,.
[8]
B. Lakshminarayanan, A. Pritzel, C. Blundell, Simple and scalable predictive uncertainty estimation using deep ensembles, I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing Systems, vol. 30, Curran Associates, Inc., 2017.
[9]
G. Huang, Y. Li, G. Pleiss, Z. Liu, J.E. Hopcroft, K.Q. Weinberger, Snapshot ensembles: train 1, get m for free, in: International Conference on Learning Representations, 2017.
[10]
M. Liu, D. Grana, L.P. de Figueiredo, Uncertainty quantification in stochastic inversion with dimensionality reduction using variational autoencoder, Geophysics 87 (2) (2021) M43–M58,.
[11]
B.X. Yong, A. Brintrup, Bayesian autoencoders with uncertainty quantification: towards trustworthy anomaly detection, Expert Syst. Appl. 209 (2022),.
[12]
L. Perini, V. Vercruyssen, J. Davis, Quantifying the confidence of anomaly detectors in their example-wise predictions, in: F. Hutter, K. Kersting, J. Lijffijt, I. Valera (Eds.), Machine Learning and Knowledge Discovery in Databases, Springer International Publishing, Cham, 2021, pp. 227–243.
[13]
E. Pickering, S. Guth, G.E. Karniadakis, T.P. Sapsis, Discovering and forecasting extreme events via active learning in neural operators, Nat. Comput. Sci. 2 (2022) 823–833,.
[14]
L. Hansen, P. Salamon, Neural network ensembles, IEEE Trans. Pattern Anal. Mach. Intell. 12 (10) (1990) 993–1001,.
[15]
E. Saetta, R. Tognaccini, G. Iaccarino, AbbottAE: an autoencoder for airfoil aerodynamics, in: AIAA AVIATION 2023 Forum, San Diego, CA, AIAA, June 2023, pp. 2023–4364,.
[16]
T.D. Economon, F. Palacios, S.R. Copeland, T.W. Lukaczyk, J.J. Alonso, Su2: an open-source suite for multiphysics simulation and design, AIAA J. 54 (3) (2016) 828–846,.
[17]
E. Saetta, R. Tognaccini, G. Iaccarino, Machine learning to predict aerodynamic stall, Int. J. Comput. Fluid Dyn. 36 (7) (2022) 641–654,.
[18]
K. Tangsali, V.R. Krishnamurthy, Z. Hasnain, Generalizability of convolutional encoder–decoder networks for aerodynamic flow-field prediction across geometric and physical-fluidic variations, J. Mech. Des. 143 (5) (11 2020),.
[19]
Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process. 13 (4) (2004) 600–612,.
[20]
M.D. McKay, R.J. Beckman, W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21 (2) (1979) 239–245.
[21]
Y.-D. Zhou, K.-T. Fang, J.-H. Ning, Mixture discrepancy for quasi-random point sets, J. Complex. 29 (3) (2013) 283–301,.
[22]
J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-parameter optimization, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, K. Weinberger (Eds.), Advances in Neural Information Processing Systems, vol. 24, Curran Associates, Inc., 2011.
[23]
T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: a next-generation hyperparameter optimization framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.
[24]
G. Wahba, Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, 1990.
[25]
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (2014) 1929–1958.
[26]
J.C. Gower, Generalized procrustes analysis, Psychometrika 40 (1975) 33–51,.
[27]
W. Krzanowski, Principles of Multivariate Analysis: A User's Perspective, Oxford Statistical Science Series, Oxford University Press, 2000.
[28]
C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning, The MIT Press, 2005,.
[29]
A.A. Mishra, J. Mukhopadhaya, G. Iaccarino, J. Alonso, Uncertainty estimation module for turbulence model predictions in Su2, AIAA J. 57 (3) (2019) 1066–1077,.
[30]
C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, Algorithm 778: L-bfgs-b: fortran subroutines for large-scale bound-constrained optimization, ACM Trans. Math. Softw. 23 (4) (1997) 550–560,.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational Physics
Journal of Computational Physics  Volume 506, Issue C
Jun 2024
654 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 17 July 2024

Author Tags

  1. Uncertainty quantification
  2. Machine learning
  3. Autoencoder
  4. Airfoil aerodynamics

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media