An upwind moving least squares approximation to solve convection-dominated problems: : An application in mixed discrete least squares meshfree method
References
[1]
G.R. Liu, Meshfree methods: Moving Beyond the Finite Element Method, CRC press, 2009.
[2]
G.R. Liu, Y.T. Gu, An Introduction to Meshfree Methods and Their Programming, Springer Science & Business Media, 2005.
[3]
G.R. Liu, M.B. Liu, Smoothed Particle hydrodynamics: a Meshfree Particle Method, World scientific, 2003.
[4]
J.J. Monaghan, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys. 30 (1992) 543–574.
[5]
J.J. Monaghan, Simulating free surface flows with SPH, J. Comput. Phys. 110 (1994) 399–406.
[6]
R. Xu, P. Stansby, D. Laurence, Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach, J. Comput. Phys. 228 (2009) 6703–6725.
[7]
S. Koshizuka, A particle method for incompressible viscous flow with fluid fragmentation, Comput. Fluid Dyn. J. (1996).
[8]
S. Koshizuka, A. Nobe, Y. Oka, Numerical analysis of breaking waves using the moving particle semi-implicit method, Int. J. Numer. Methods Fluids. 26 (1998) 751–769.
[9]
A. Khayyer, H. Gotoh, Enhancement of stability and accuracy of the moving particle semi-implicit method, J. Comput. Phys. 230 (2011) 3093–3118.
[10]
Z. Chen, Z. Zong, M.B. Liu, L. Zou, H.T. Li, C. Shu, An SPH model for multiphase flows with complex interfaces and large density differences, J. Comput. Phys. 283 (2015) 169–188.
[11]
Z.B. Wang, R. Chen, H. Wang, Q. Liao, X. Zhu, S.Z. Li, An overview of smoothed particle hydrodynamics for simulating multiphase flow, Appl. Math. Model. 40 (2016) 9625–9655.
[12]
X. Liu, K. Morita, S. Zhang, Direct numerical simulation of incompressible multiphase flow with vaporization using moving particle semi-implicit method, J. Comput. Phys. 425 (2021).
[13]
J. Wang, X. Zhang, Improved Moving Particle Semi-implicit method for multiphase flow with discontinuity, Comput. Methods Appl. Mech. Eng. 346 (2019) 312–331.
[14]
C.H. Lee, A.J. Gil, A. Ghavamian, J. Bonet, A Total Lagrangian upwind Smooth Particle Hydrodynamics algorithm for large strain explicit solid dynamics, Comput. Methods Appl. Mech. Eng. 344 (2019) 209–250.
[15]
Y. Amini, H. Emdad, M. Farid, A new model to solve fluid–hypo-elastic solid interaction using the smoothed particle hydrodynamics (SPH) method, Eur. J. Mech. 30 (2011) 184–194.
[16]
A. Khayyer, N. Tsuruta, Y. Shimizu, H. Gotoh, Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering, Appl. Ocean Res. 82 (2019) 397–414.
[17]
M. Rakhsha, A. Pazouki, R. Serban, D. Negrut, Using a half-implicit integration scheme for the SPH-based solution of fluid–solid interaction problems, Comput. Methods Appl. Mech. Eng. 345 (2019) 100–122.
[18]
Y. Tang, Q. Jiang, C. Zhou, A Lagrangian-based SPH-DEM model for fluid–solid interaction with free surface flow in two dimensions, Appl. Math. Model. 62 (2018) 436–460.
[19]
M. Soleimani, S. Sahraee, P. Wriggers, Red blood cell simulation using a coupled shell–fluid analysis purely based on the SPH method, Biomech. Model. Mechanobiol. 18 (2019) 347–359.
[20]
T. Belytschko, Y.Y. Lu, L. Gu, Element-free Galerkin methods, Int. J. Numer. Methods Eng. 37 (1994) 229–256.
[21]
S.N. Atluri, T. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech 22 (1998) 117–127.
[22]
H. Arzani, M.H. Afshar, Solving Poisson's equations by the discrete least square meshless method, WIT Trans. Modelling Simul. 42 (2006) 23–31.
[23]
T. Belytschko, Y.Y. Lu, L. Gu, Crack propagation by element-free Galerkin methods, Eng. Fract. Mech 51 (1995) 295–315.
[24]
Y. Shao, Q. Duan, S. Qiu, Consistent element-free Galerkin method for three-dimensional crack propagation based on a phase-field model, Comput. Mater. Sci. 179 (2020).
[25]
M.J. Schulte, M. Robinett, N. Weidle, C.J. Duran, M.C. Flickinger, Experiments and finite element modeling of hydrodynamics and mass transfer for continuous gas-to-liquid biocatalysis using a biocomposite falling film reactor, Chem. Eng. Sci. 209 (2019).
[26]
I.V. Singh, P.K. Jain, Parallel EFG algorithm for heat transfer problems, Adv. Eng. Softw. 36 (2005) 554–560.
[27]
A. Singh, I.V. Singh, R. Prakash, Meshless element free Galerkin method for unsteady nonlinear heat transfer problems, Int. J. Heat Mass Transf. 50 (2007) 1212–1219.
[28]
M. Abbaszadeh, M. Dehghan, A. Khodadadian, N. Noii, C. Heitzinger, T. Wick, A reduced-order variational multiscale interpolating element free Galerkin technique based on proper orthogonal decomposition for solving Navier–Stokes equations coupled with a heat transfer equation: Nonstationary incompressible Boussinesq equations, J. Comput. Phys. 426 (2021).
[29]
X.H. Wu, W.Q. Tao, S.P. Shen, X.W. Zhu, A stabilized MLPG method for steady state incompressible fluid flow simulation, J. Comput. Phys. 229 (2010) 8564–8577.
[30]
H. Lin, S.N. Atluri, The meshless local Petrov-Galerkin (MLPG) method for solving incompressible Navier-Stokes equations, C. Comput. Model. Eng. Sci. 2 (2001) 117–142.
[31]
A.R. Mojdehi, A. Darvizeh, A. Basti, Nonlinear Dynamic Analysis of Three-Dimensional Elasto-Plastic Solids by the Meshless Local Petrov-Galerkin(MLPG) Method, Comput. Mater. Contin. 29 (2012) 15–39.
[32]
J. Sladek, V. Sladek, M. Jus, The MLPG for crack analyses in composites with flexoelectricity effects, Compos. Struct. 204 (2018) 105–113.
[33]
S. Faraji, M.H. Afshar, J. Amani, Mixed discrete least square meshless method for solution of quadratic partial differential equations, Sci. Iran. 21 (2014) 492–504.
[34]
S. Faraji Gargari, M. Kolahdoozan, M.H. Afshar, Mixed Discrete Least Squares Meshfree method for solving the incompressible Navier–Stokes equations, Eng. Anal. Bound. Elem. 88 (2018),.
[35]
S. Faraji Gargari, M. Kolahdoozan, M.H. Afshar, Collocated mixed discrete least squares meshless (CMDLSM) method for solving quadratic partial differential equations, Sci. Iran. (2018) 25,.
[36]
J. Amani, M.H. Afshar, M. Naisipour, Mixed discrete least squares meshless method for planar elasticity problems using regular and irregular nodal distributions, Eng. Anal. Bound. Elem. 36 (2012) 894–902.
[37]
S.F. Gargari, M. Kolahdoozan, M.H. Afshar, Mixed Discrete Least Squares Meshfree method for solving the incompressible Navier–Stokes equations, Eng. Anal. Bound. Elem. 88 (2018) 64–79.
[38]
S.F. Gargari, M. Kolahdoozan, M.H. Afshar, S. Dabiri, An Eulerian–Lagrangian mixed discrete least squares meshfree method for incompressible multiphase flow problems, Appl. Math. Model. 76 (2019) 193–224.
[39]
N. Eini, M.H. Afshar, S. Faraji Gargari, G. Shobeyri, A. Afshar, A fully Lagrangian mixed discrete least squares meshfree method for simulating the free surface flow problems, Eng. Comput. (2020) 1–21.
[40]
M. Meenal, T.I. Eldho, Two-dimensional contaminant transport modeling using meshfree point collocation method (PCM), Eng. Anal. Bound. Elem. 36 (2012) 551–561,.
[41]
S. Boddula, T.I. Eldho, A moving least squares based meshless local petrov-galerkin method for the simulation of contaminant transport in porous media, Eng. Anal. Bound. Elem. 78 (2017) 8–19,.
[42]
P. Majumder, T.I. Eldho, Reactive contaminant transport simulation using the analytic element method, random walk particle tracking and kernel density estimator, J. Contam. Hydrol. 222 (2019) 76–88,.
[43]
G. Fourtakas, P.K. Stansby, B.D. Rogers, S.J. Lind, An Eulerian–Lagrangian incompressible SPH formulation (ELI-SPH) connected with a sharp interface, Comput. Methods Appl. Mech. Eng. 329 (2018) 532–552.
[44]
M. Antuono, P.N. Sun, S. Marrone, A. Colagrossi, The δ-ALE-SPH model: An arbitrary Lagrangian-Eulerian framework for the δ-SPH model with particle shifting technique, Comput. Fluids. 216 (2021).
[45]
S. Tiwari, A. Klar, G. Russo, A meshfree arbitrary Lagrangian-Eulerian method for the BGK model of the Boltzmann equation with moving boundaries, J. Comput. Phys. 458 (2022).
[46]
A. Golbabai, N. Kalarestaghi, Improved localized radial basis functions with fitting factor for dominated convection-diffusion differential equations, Eng. Anal. Bound. Elem. 92 (2018) 124–135.
[47]
Y. Gu, G.R. Liu, Meshless techniques for convection dominated problems, Comput. Mech. 38 (2006) 171–182.
[48]
M. Cheng, G.R. Liu, A novel finite point method for flow simulation, Int. J. Numer. Methods Fluids. 39 (2002) 1161–1178.
[49]
H. Lin, S.N. Atluri, Meshless local Petrov-Galerkin(MLPG) method for convection diffusion problems, C. Model. Eng. Sci. 1 (2000) 45–60.
[50]
X.H. Wu, Y.J. Dai, W.Q. Tao, MLPG/SUPG method for convection-dominated problems, Numer. Heat Transf. Part B Fundam. 61 (2012) 36–51.
[51]
C.H. Lee, A.J. Gil, O.I. Hassan, J. Bonet, S. Kulasegaram, A variationally consistent Streamline Upwind Petrov–Galerkin Smooth Particle Hydrodynamics algorithm for large strain solid dynamics, Comput. Methods Appl. Mech. Eng. 318 (2017) 514–536.
[52]
T. Gao, T. Liang, L. Fu, A new smoothed particle hydrodynamics method based on high-order moving-least-square targeted essentially non-oscillatory scheme for compressible flows, J. Comput. Phys. (2023).
[53]
D. Avesani, M. Dumbser, A. Bellin, A new class of Moving-Least-Squares WENO–SPH schemes, J. Comput. Phys. 270 (2014) 278–299.
[54]
S. Peddavarapu, R. Srinivasan, Local maximum-entropy approximation based stabilization methods for the convection diffusion problems, Eng. Anal. Bound. Elem. 146 (2023) 531–554.
[55]
T.H. Huang, Stabilized and variationally consistent integrated meshfree formulation for advection-dominated problems, Comput. Methods Appl. Mech. Eng. 403 (2023).
[56]
M. Dehghan, M. Abbaszadeh, An upwind local radial basis functions-differential quadrature (RBF-DQ) method with proper orthogonal decomposition (POD) approach for solving compressible Euler equation, Eng. Anal. Bound. Elem. 92 (2018) 244–256.
[57]
M. Abbaszadeh, M. Dehghan, Meshless upwind local radial basis function-finite difference technique to simulate the time-fractional distributed-order advection–diffusion equation, Eng. Comput. 37 (2021) 873–889.
[58]
H.G. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods For Singularly Perturbed Differential equations: Convection-Diffusion-Reaction and Flow Problems, Springer Science & Business Media, 2008.
[59]
A. Owen, Artificial diffusion in the numerical modelling of the advective transport of salinity, Appl. Math. Model. 8 (1984) 116–120.
[60]
A.W. Vreman, Stabilization of the Eulerian model for incompressible multiphase flow by artificial diffusion, J. Comput. Phys. 230 (2011) 1639–1651.
[61]
Q. Cai, S. Kollmannsberger, E. Sala-Lardies, A. Huerta, E. Rank, On the natural stabilization of convection dominated problems using high order Bubnov–Galerkin finite elements, Comput. Math. with Appl. 66 (2014) 2545–2558.
[62]
D.W. Kelly, S. Nakazawa, O.C. Zienkiewicz, J. Heinrich, A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems, Int. J. Numer. Methods Eng. 15 (1980) 1705–1711.
[63]
R. Courant, E. Isaacson, M. Rees, On the solution of nonlinear hyperbolic differential equations by finite differences, Commun. Pure Appl. Math. 5 (1952) 243–255.
[64]
J.J.H. Miller, E. O'riordan, G.I. Shishkin, On piecewise-uniform meshes for upwind-and central-difference operators for solving singularly perturbed problems, IMA J. Numer. Anal. 15 (1995) 89–99.
[65]
P.M. Gresho, R.L. Lee, Don't suppress the wiggles—They're telling you something!, Comput. Fluids. 9 (1981) 223–253.
[66]
A.E.P. Veldman, Computational fluid dynamics, Lect. Notes, Univ. Groningen, Netherlands. (2001).
[67]
B.P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng. 19 (1979) 59–98.
[68]
C. Hirsch, Numerical Computation of Internal and External Flows, Computational Methods for Inviscid and Viscous Flows, Chichester, 1990, Vol. 2.
[69]
F. Moukalled, L. Mangani, M. Darwish, F. Moukalled, L. Mangani, M. Darwish, The Finite Volume Method, Springer, 2016.
[70]
J.C. Heinrich, P.S. Huyakorn, O.C. Zienkiewicz, A. Mitchell, An'upwind'finite element scheme for two-dimensional convective transport equation, Int. J. Numer. Methods Eng. 11 (1977) 131–143.
[71]
T.P. Fries, H. Matthies, A review of Petrov-Galerkin stabilization approaches and an extension to meshfree methods, Inst. für wiss, Rechnen (2004).
[72]
T.P. Fries, H.G. Matthies, A stabilized and coupled meshfree/meshbased method for the incompressible Navier–Stokes equations—Part I: stabilization, Comput. Methods Appl. Mech. Eng. 195 (2006) 6205–6224.
[73]
A.N. Brooks, T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng. 32 (1982) 199–259.
[74]
C.R. Swaminathan, V.R. Voller, Streamline upwind scheme for control-volume finite elements, part II. Implementation and comparison with the SUPG finite-element scheme, Numer. Heat Transf, Part B Fundam 22 (1992) 109–124.
[75]
C.R. Swaminathan, V.R. Voller, S.V. Patankar, A streamline upwind control volume finite element method for modeling fluid flow and heat transfer problems, Finite Elem. Anal. Des. 13 (1993) 169–184.
[76]
C.R. Swaminathan, V.R. Voller, Streamline upwind scheme for control-volume finite elements, part I. Formulations, Numer. Heat Transf, Part B Fundam 22 (1992) 95–107.
[77]
D. Kuzmin, S. Turek, High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter, J. Comput. Phys. 198 (2004) 131–158.
[78]
D. Kuzmin, Explicit and implicit FEM-FCT algorithms with flux linearization, J. Comput. Phys. 228 (2009) 2517–2534.
[79]
Y.T. Zhang, C.W. Shu, ENO and WENO schemes, Handb. Numer. Anal., Elsevier, 2016, pp. 103–122.
[80]
M. Hajipour, A. Malek, High accurate NRK and MWENO scheme for nonlinear degenerate parabolic PDEs, Appl. Math. Model. 36 (2012) 4439–4451.
[81]
T. Arbogast, C.S. Huang, X. Zhao, D.N. King, A third order, implicit, finite volume, adaptive Runge–Kutta WENO scheme for advection–diffusion equations, Comput. Methods Appl. Mech. Eng. 368 (2020).
[82]
Z. Huang, G. Lin, A.M. Ardekani, A mixed upwind/central WENO scheme for incompressible two-phase flows, J. Comput. Phys. 387 (2019) 455–480.
[83]
N. Zhan, R. Chen, Y. You, Three-dimensional high-order finite-volume method based on compact WENO reconstruction with hybrid unstructured grids, J. Comput. Phys. (2023).
[84]
A.R. Firoozjaee, M.H. Afshar, Discrete least squares meshless method with sampling points for the solution of elliptic partial differential equations, Eng. Anal. Bound. Elem. 33 (2009) 83–92.
[85]
F.E. Erami, A.R. Firoozjaee, Numerical solution of bed load transport equations using discrete least squares meshless (DLSM) method, Appl. Math. Model. 77 (2020) 1095–1109.
[86]
X. Guo, A meshless regularized local boundary integral equation method and the selection of weight function and geometrical parameters, Eng. Anal. Bound. Elem. 117 (2020) 221–231,.
[87]
V. John, Numerical Methods for Scalar Convection-Dominated Problems, (2013).
[88]
Y.M. Cheng, F.N. Bai, M.J. Peng, A novel interpolating element-free Galerkin (IEFG) method for two-dimensional elastoplasticity, Appl. Math. Model. 38 (2014) 5187–5197,.
[89]
M. Dehghan, M. Abbaszadeh, A. Mohebbi, Analysis of two methods based on Galerkin weak form for fractional diffusion-wave: Meshless interpolating element free Galerkin (IEFG) and finite element methods, Eng. Anal. Bound. Elem 64 (2016) 205–221,.
[90]
J.F. Wang, F.X. Sun, Y.M. Cheng, A.X. Huang, Error estimates for the interpolating moving least-squares method, Appl. Math. Comput. 245 (2014) 321–342,.
[91]
F.X. Sun, J.F. Wang, Y.M. Cheng, A.X. Huang, Error estimates for the interpolating moving least-squares method in n-dimensional space, Appl. Numer. Math. 98 (2015) 79–105,.
[92]
Q. Wang, W. Zhou, Y. Cheng, G. Ma, X. Chang, Y. Miao, E. Chen, Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices, Appl. Math. Comput. 325 (2018) 120–145,.
[93]
S.F. gargari, M. Kolahdoozan, M.H. Afshar, Mixed discrete least squares meshless method for solving the linear and non-linear propagation problems, Sci. Iran. 25 (2018) 565–578.
Information & Contributors
Information
Published In
Copyright © 2024.
Publisher
Academic Press Professional, Inc.
United States
Publication History
Published: 01 June 2024
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025