[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
rapid-communication

An efficient matrix factorization within the projection framework for ameliorating the surface tension time step constraint in interfacial flows

Published: 12 April 2024 Publication History

Abstract

An efficient matrix factorization approach is proposed for simulation of interfacial flows involving surface tension forces within the projection framework. The level set method is used to capture the interface of different phases and a projection based fluid solver is used for solving the variable density problem on a staggered grid. The governing equations for the two-phase flow, together with the convection equation for the interface, are organized into a matrix representation. Instead of explicitly partitioning the system or adopting non-linear iterative strategy, the system is factorized into separate equations using nested approximate LU decomposition with resort to the projection approach. Second-order temporal accuracy and implicit property are maintained throughout the decomposition. Numerical tests showed that the current scheme is second-order accurate in time, and can maintain numerical stability even when the time step is 80 times of the capillary time step constraint.

References

[1]
N. Nangia, B.E. Griffith, N.A. Patankar, A.P.S. Bhalla, A robust incompressible Navier-Stokes solver for high density ratio multiphase flows, J. Comput. Phys. 390 (2019) 548–594.
[2]
Z. Yang, M. Lu, S. Wang, A robust solver for incompressible high-Reynolds-number two-fluid flows with high density contrast, J. Comput. Phys. 441 (2021).
[3]
J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 335–354.
[4]
F. Denner, B.G.M. van Wachem, Numerical time-step restrictions as a result of capillary waves, J. Comput. Phys. 285 (2015) 24–40.
[5]
C. Galusinski, P. Vigneaux, On stability condition for bifluid flows with surface tension: application to microfluidics, J. Comput. Phys. 227 (2008) 6140–6164.
[6]
S. Popinet, Numerical models of surface tension, Annu. Rev. Fluid Mech. 50 (2018) 49–75.
[7]
S. Hysing, A new implicit surface tension implementation for interfacial flows, Int. J. Numer. Methods Fluids 51 (2006) 659–672.
[8]
M. Raessi, M. Bussmann, J. Mostaghimi, A semi-implicit finite volume implementation of the csf method for treating surface tension in interfacial flows, Int. J. Numer. Methods Fluids 59 (2009) 1093–1110.
[9]
M. Sussman, M. Ohta, A stable and efficient method for treating surface tension in incompressible two-phase flow, SIAM J. Sci. Comput. 31 (2009) 2447–2471.
[10]
T.Y. Hou, J.S. Lowengrub, M.J. Shelley, Removing the stiffness from interfacial flows with surface tension, J. Comput. Phys. 114 (1994) 312–338.
[11]
J. Hochstein, T. Williams, An implicit surface tension model, in: 34th Aerospace Sciences Meeting and Exhibit, 1996, p. 599.
[12]
A. Jarauta, P. Ryzhakov, J. Pons-Prats, M. Secanell, An implicit surface tension model for the analysis of droplet dynamics, J. Comput. Phys. 374 (2018) 1196–1218.
[13]
E.N. Mahrous, R.V. Roy, A. Jarauta, M. Secanell, A three-dimensional numerical model for the motion of liquid drops by the particle finite element method, Phys. Fluids (2022).
[14]
E. Bänsch, S. Weller, Fully implicit time discretization for a free surface flow problem, PAMM 11 (2011) 619–620.
[15]
F. Denner, F. Evrard, B. van Wachem, Breaching the capillary time-step constraint using a coupled vof method with implicit surface tension, J. Comput. Phys. 459 (2022).
[16]
Z. Yang, S. Dong, An unconditionally energy-stable scheme based on an implicit auxiliary energy variable for incompressible two-phase flows with different densities involving only precomputable coefficient matrices, J. Comput. Phys. 393 (2019) 229–257.
[17]
B. Lee, G. Yoon, C. Min, A semi-implicit and unconditionally stable approximation of the surface tension in two-phase fluids, J. Comput. Phys. 397 (2019).
[18]
F. Denner, F. Evrard, R. Serfaty, B.G.M. van Wachem, Artificial viscosity model to mitigate numerical artefacts at fluid interfaces with surface tension, Comput. Fluids 143 (2017) 59–72.
[19]
B.E. Griffith, An accurate and efficient method for the incompressible Navier–Stokes equations using the projection method as a preconditioner, J. Comput. Phys. 228 (2009) 7565–7595.
[20]
K. Kim, S.-J. Baek, H.J. Sung, An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations, Int. J. Numer. Methods Fluids 38 (2002) 125–138.
[21]
X. Pan, S. Chun, J.-I. Choi, Efficient monolithic projection-based method for Chemotaxis-driven bioconvection problems, Comput. Math. Appl. 84 (2021) 166–184.
[22]
X. Pan, K.-H. Kim, J.-I. Choi, Efficient monolithic projection method with staggered time discretization for natural convection problems, Int. J. Heat Mass Transf. 144 (2019).
[23]
X. Pan, K. Kim, C. Lee, J.-I. Choi, A decoupled monolithic projection method for natural convection problems, J. Comput. Phys. 314 (2016) 160–166.
[24]
X. Pan, K. Kim, C. Lee, J.-I. Choi, Fully decoupled monolithic projection method for natural convection problems, J. Comput. Phys. 334 (2017) 582–606.
[25]
X. Pan, C. Lee, K. Kim, J.-I. Choi, Analysis of velocity-components decoupled projection method for the incompressible Navier–Stokes equations, Comput. Math. Appl. 71 (2016) 1722–1743.
[26]
U. Lacis, K. Taira, S. Bagheri, A stable fluid-structure-interaction solver for low-density rigid bodies using the immersed boundary projection method, J. Comput. Phys. 305 (2016) 300–318.
[27]
R.-Y. Li, C.-M. Xie, W.-X. Huang, C.-X. Xu, An efficient immersed boundary projection method for flow over complex/moving boundaries, Comput. Fluids 140 (2016) 122–135.
[28]
L. Wang, C. Xie, W. Huang, A monolithic projection framework for constrained fsi problems with the immersed boundary method, Comput. Methods Appl. Mech. Eng. 371 (2020).
[29]
M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible 2-phase flow, J. Comput. Phys. 114 (1994) 146–159.
[30]
R.M. Beam, R.F. Warming, An implicit factored scheme for the compressible Navier-Stokes equations, AIAA J. 16 (1978) 393–402.
[31]
A.J. Chorin, The numerical solution of the Navier-Stokes equations for an incompressible fluid, Bull. Am. Math. Soc. 73 (1967) 928–931.
[32]
M.-C. Lai, C.S. Peskin, An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys. 160 (2000) 705–719.
[33]
R.P. Beyer, R.J. LeVeque, Analysis of a one-dimensional model for the immersed boundary method, SIAM J. Numer. Anal. 29 (1992) 332–364.
[34]
M.-C. Lai, Simulations of the flow past an array of circular cylinders as a test of the immersed boundary method, Ph.d. New York University, United States – New York, 1998.
[35]
K. Kim, S.-J. Baek, H.J. Sung, An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations, Int. J. Numer. Methods Fluids 38 (2002) 125–138.
[36]
B.P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng. 19 (1979) 59–98.
[37]
X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115 (1994) 200–212.
[38]
G.-S. Jiang, D. Peng, Weighted eno schemes for Hamilton–Jacobi equations, SIAM J. Sci. Comput. 21 (2000) 2126–2143.
[39]
M. Sussman, E. Fatemi, An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow, SIAM J. Sci. Comput. 20 (1999) 1165–1191.
[40]
J.A. Sethian, Fast marching methods, SIAM Rev. 41 (1999) 199–235.
[41]
H. Zhao, A fast sweeping method for Eikonal equations, Math. Comput. 74 (2005) 603–627.
[42]
Wang, L. (2019): OpFlow: EDSL for PDE solver composing. https://github.com/OpFlow-dev/OpFlow.
[43]
C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.
[44]
R.J. Leveque, Z.L. Li, Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput. 18 (1997) 709–735.
[45]
Z. Li, M.-C. Lai, The immersed interface method for the Navier–Stokes equations with singular forces, J. Comput. Phys. 171 (2001) 822–842.
[46]
T. Abadie, J. Aubin, D. Legendre, On the combined effects of surface tension force calculation and interface advection on spurious currents within volume of fluid and level set frameworks, J. Comput. Phys. 297 (2015) 611–636.
[47]
R. Bellman, R.H. Pennington, Effects of surface tension and viscosity on Taylor instability, Q. Appl. Math. 12 (1954) 151–162.
[48]
K. Yokoi, Efficient implementation of thinc scheme: a simple and practical smoothed vof algorithm, J. Comput. Phys. 226 (2007) 1985–2002.
[49]
B.J. Daly, Numerical study of the effect of surface tension on interface instability, Phys. Fluids 12 (2003) 1340.
[50]
H. Ding, P. Spelt, C. Shu, Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys. 226 (2007) 2078–2095.
[51]
G. Tryggvason, Numerical simulations of the Rayleigh-Taylor instability, J. Comput. Phys. 75 (1988) 253–282.
[52]
J.L. Guermond, L. Quartapelle, A projection fem for variable density incompressible flows, J. Comput. Phys. 165 (2000) 167–188.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational Physics
Journal of Computational Physics  Volume 498, Issue C
Feb 2024
1144 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 12 April 2024

Author Tags

  1. Interfacial flow
  2. Projection scheme
  3. Matrix factorization
  4. Approximate LU decomposition
  5. Surface tension

Qualifiers

  • Rapid-communication

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media