[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A positivity-preserving numerical method for a thin liquid film on a vertical cylindrical fiber

Published: 27 February 2024 Publication History

Abstract

When a thin liquid film flows down on a vertical fiber, one can observe the complex and captivating interfacial dynamics of an unsteady flow. Such dynamics are applicable in various fluid experiments due to their high surface area-to-volume ratio. Recent studies verified that when the flow undergoes regime transitions, the magnitude of the film thickness changes dramatically, making numerical simulations challenging. In this paper, we present a computationally efficient numerical method that can maintain the positivity of the film thickness as well as conserve the volume of the fluid under the coarse mesh setting. A series of comparisons to laboratory experiments and previously proposed numerical methods supports the validity of our numerical method. We also prove that our method is second-order consistent in space and satisfies the entropy estimate.

References

[1]
D. Quéré, Thin films flowing on vertical fibers, Europhys. Lett. 13 (1990) 721.
[2]
S. Kalliadasis, C. Ruyer-Quil, B. Scheid, M.G. Velarde, Falling Liquid Films, vol. 176, Springer Science & Business Media, 2011.
[3]
A. Sadeghpour, Z. Zeng, H. Ji, N. Dehdari Ebrahimi, A.L. Bertozzi, Y.S. Ju, Water vapor capturing using an array of traveling liquid beads for desalination and water treatment, Sci. Adv. 5 (2019).
[4]
C.T. Gabbard, J.B. Bostwick, Asymmetric instability in thin-film flow down a fiber, Phys. Rev. Fluids 6 (2021).
[5]
K. Uchiyama, H. Migita, R. Ohmura, Y.H. Mori, Gas absorption into “string-of-beads” liquid flow with chemical reaction: application to carbon dioxide separation, Int. J. Heat Mass Transf. 46 (2003) 457–468.
[6]
J. Grünig, E. Lyagin, S. Horn, T. Skale, M. Kraume, Mass transfer characteristics of liquid films flowing down a vertical wire in a counter current gas flow, Chem. Eng. Sci. 69 (2012) 329–339.
[7]
H. Chinju, K. Uchiyama, Y.H. Mori, “String-of-beads” flow of liquids on vertical wires for gas absorption, AIChE J. 46 (2000) 937–945.
[8]
Z. Zeng, A. Sadeghpour, G. Warrier, Y.S. Ju, Experimental study of heat transfer between thin liquid films flowing down a vertical string in the Rayleigh-Plateau instability regime and a counterflowing gas stream, Int. J. Heat Mass Transf. 108 (2017) 830–840.
[9]
Z. Zeng, A. Sadeghpour, Y.S. Ju, Thermohydraulic characteristics of a multi-string direct-contact heat exchanger, Int. J. Heat Mass Transf. 126 (2018) 536–544.
[10]
T. Gilet, D. Terwagne, N. Vandewalle, Digital microfluidics on a wire, Appl. Phys. Lett. 95 (2009).
[11]
R.V. Craster, O.K. Matar, Dynamics and stability of thin liquid films, Rev. Mod. Phys. 81 (2009) 1131.
[12]
H.-C. Chang, E.A. Demekhin, Mechanism for drop formation on a coated vertical fibre, J. Fluid Mech. 380 (1999) 233–255.
[13]
C. Duprat, C. Ruyer-Quil, F. Giorgiutti-Dauphiné, Spatial evolution of a film flowing down a fiber, Phys. Fluids 21 (2009).
[14]
C. Ruyer-Quil, P. Treveleyan, F. Giorgiutti-Dauphiné, C. Duprat, S. Kalliadasis, Modelling film flows down a fibre, J. Fluid Mech. 603 (2008) 431–462.
[15]
A. Sadeghpour, Z. Zeng, Y.S. Ju, Effects of nozzle geometry on the fluid dynamics of thin liquid films flowing down vertical strings in the Rayleigh–Plateau regime, Langmuir 33 (2017) 6292–6299.
[16]
D. Quéré, Fluid coating on a fiber, Annu. Rev. Fluid Mech. 31 (1999) 347–384.
[17]
I. Kliakhandler, S.H. Davis, S. Bankoff, Viscous beads on vertical fibre, J. Fluid Mech. 429 (2001) 381–390.
[18]
H. Ji, C. Falcon, A. Sadeghpour, Z. Zeng, Y.S. Ju, A.L. Bertozzi, Dynamics of thin liquid films on vertical cylindrical fibres, J. Fluid Mech. 865 (2019) 303–327.
[19]
C. Ruyer-Quil, S.P.M.J. Trevelyan, F. Giorgiutti-Dauphiné, C. Duprat, S. Kalliadasis, Film flows down a fiber: modeling and influence of streamwise viscous diffusion, Eur. Phys. J. Spec. Top. 166 (2009) 89–92.
[20]
C. Ruyer-Quil, S. Kalliadasis, Wavy regimes of film flow down a fiber, Phys. Rev. E 85 (2012).
[21]
H. Ji, R. Taranets, M. Chugunova, On travelling wave solutions of a model of a liquid film flowing down a fibre, Eur. J. Appl. Math. 33 (2021) 864–893.
[22]
P. Li, Y. Chao, Marangoni instability of self-rewetting films modulated by chemical reactions flowing down a vertical fibre, Chem. Eng. Sci. 227 (2020).
[23]
A.L. Frenkel, Nonlinear theory of strongly undulating thin films flowing down vertical cylinders, Europhys. Lett. 18 (1992) 583.
[24]
R.V. Craster, O.K. Matar, On viscous beads flowing down a vertical fibre, J. Fluid Mech. 553 (2006) 85–105.
[25]
D. Halpern, H.-H. Wei, Slip-enhanced drop formation in a liquid falling down a vertical fibre, J. Fluid Mech. 820 (2017) 42–60.
[26]
G.M. Sisoev, R.V. Craster, O.K. Matar, S.V. Gerasimov, Film flow down a fibre at moderate flow rates, Chem. Eng. Sci. 61 (2006) 7279–7298.
[27]
Y.Y. Trifonov, Steady-state traveling waves on the surface of a viscous liquid film falling down on vertical wires and tubes, AIChE J. 38 (1992) 801–965.
[28]
E. Novbari, A. Oron, Energy integral method model for the nonlinear dynamics of an axisymmetric thin liquid film falling on a vertical cylinder, Phys. Fluids 21 (2009).
[29]
F. Bernis, Viscous flows, fourth order nonlinear degenerate parabolic equations and singular elliptic problems, in: Free Boundary Problems: Theory and Applications, vol. 323, 1995, pp. 40–56.
[30]
G. Grün, M. Rumpf, Simulation of singularities and instabilities arising in thin film flow, Eur. J. Appl. Math. 12 (2001) 293–320.
[31]
C. Duprat, C. Ruyer-Quil, S. Kalliadasis, F. Giorgiutti-Dauphiné, Absolute and convective instabilities of a viscous film flowing down a vertical fiber, Phys. Rev. Lett. 98 (2007).
[32]
L.B. Smolka, J. North, B.K. Guerra, Dynamics of free surface perturbations along an annular viscous film, Phys. Rev. E 77 (2008).
[33]
B. Reisfeld, S.G. Bankoff, Non-isothermal flow of a liquid film on a horizontal cylinder, J. Fluid Mech. 236 (1992) 167–196.
[34]
D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Wetting and spreading, Rev. Mod. Phys. 81 (2009) 739.
[35]
A. Oron, S.H. Davis, S.G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys. 69 (1997) 931.
[36]
A.L. Bertozzi, G. Grün, T.P. Witelski, Dewetting films: bifurcations and concentrations, Nonlinearity 14 (2001) 1569–1592.
[37]
J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K.R. Mecke, R. Blossey, Complex dewetting scenarios captured by thin-film models, Nat. Mater. 2 (2003) 59–63.
[38]
H.-W. Lu, K. Glasner, A.L. Bertozzi, C.-J. Kim, A diffuse-interface model for electrowetting drops in a Hele-Shaw cell, J. Fluid Mech. 590 (2007) 411–435.
[39]
K.L. Maki, R.J. Braun, P. Ucciferro, W.D. Henshaw, P.E. King-Smith, Tear film dynamics on an eye-shaped domain. Part 2. Flux boundary conditions, J. Fluid Mech. 647 (2010) 361–390.
[40]
G. Grün, On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions, Math. Comput. 72 (2003) 1251–1279.
[41]
A.L. Bertozzi, M.P. Brenner, T.F. Dupont, L.P. Kadanoff, Singularities and similarities in interface flows, in: Trends and Perspectives in Applied Mathematics, Springer, 1994, pp. 155–208.
[42]
A.L. Bertozzi, Symmetric singularity formation in lubrication-type equations for interface motion, SIAM J. Appl. Math. 56 (1996) 681–714.
[43]
L. Yu, J. Hinch, The velocity of ‘large’ viscous drops falling on a coated vertical fibre, J. Fluid Mech. 737 (2013) 232–248.
[44]
X. Zhang, C.-W. Shu, On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys. 229 (2010) 8918–8934.
[45]
X. Zhang, C.-W. Shu, Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments, Proc. R. Soc. A, Math. Phys. Eng. Sci. 467 (2011) 2752–2776.
[46]
J. Droniou, C.L. Potier, Construction and convergence study of schemes preserving the elliptic local maximum principle, SIAM J. Numer. Anal. 49 (2011) 459–490.
[47]
Q. Du, L. Ju, X. Li, Z. Qiao, Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes, SIAM Rev. 63 (2021) 317–359.
[48]
J.W. Barrett, J.F. Blowey, H. Garcke, Finite element approximation of a fourth order nonlinear degenerate parabolic equation, Numer. Math. 80 (1998) 525–556.
[49]
L. Zhornitskaya, A.L. Bertozzi, Positivity-preserving numerical schemes for lubrication-type equations, SIAM J. Numer. Anal. 37 (1999) 523–555.
[50]
G. Grün, M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation, Numer. Math. 87 (2000) 113–152.
[51]
B. Li, J. Yang, Z. Zhou, Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations, SIAM J. Sci. Comput. 42 (2020) A3957–A3978.
[52]
C. Lu, W. Huang, E.S. Van Vleck, The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and Lubrication-type equations, J. Comput. Phys. 242 (2013) 24–36.
[53]
W. Chen, C. Wang, X. Wang, S.M. Wise, Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential, J. Comput. Phys. X 3 (2019).
[54]
L. Dong, C. Wang, H. Zhang, Z. Zhang, A positivity-preserving, energy stable and convergent numerical scheme for the Cahn-Hilliard equation with a Flory–Huggins–de Gennes energy, Commun. Math. Sci. 17 (2019) 921–939.
[55]
J. Hu, X. Huang, A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson–Nernst–Planck equations, Numer. Math. 145 (2020) 77–115.
[56]
D. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, MRS Online Proc. Libr. 529 (1998).
[57]
B.P. Vollmayr-Lee, A.D. Rutenberg, Fast and accurate coarsening simulation with an unconditionally stable time step, Phys. Rev. E 68 (2003).
[58]
F. Huang, J. Shen, K. Wu, Bound/positivity preserving and unconditionally stable schemes for a class of fourth order nonlinear equations, J. Comput. Phys. 460 (2022).
[59]
C.M. Elliott, A.M. Stuart, The global dynamics of discrete semilinear parabolic equations, SIAM J. Numer. Anal. 30 (1993) 1622–1663.
[60]
A.L. Bertozzi, M. Pugh, The lubrication approximation for thin viscous films: the moving contact line with a ‘porous media’ cut-off of van der Waals interactions, Nonlinearity 7 (1994) 1535.
[61]
F. Bernis, A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Differ. Equ. 83 (1990) 179–206.
[62]
V.A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general form, Tr. Mat. Inst. Steklova 83 (1965) 3–163.
[63]
S.D. Eidel'man, Parabolic Systems, North Holland Publishing Company, Amsterdam, 1969.
[64]
A. Friedman, Interior estimates for parabolic systems of partial differential equations, J. Math. Mech. 7 (1958) 393–417.
[65]
A.L. Bertozzi, M. Pugh, The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Commun. Pure Appl. Math. 49 (1996) 85–123.
[66]
E. Beretta, M. Bertsch, R. Dal Passo, Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation, Arch. Ration. Mech. Anal. 129 (1995) 175–200.
[67]
R. Dal Passo, H. Garcke, G. Grün, On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal. 29 (1998) 321–342.
[68]
R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser Verlag, Basel, 1992.
[69]
Kim, B. (2023): BEM-thin-liquid-film-code-data, GitHub repository. https://github.com/BohyunKim92/BEM-thin-liquid-film-code-data.
[70]
T. Kostić, A.L. Bertozzi, Statistical density estimation using threshold dynamics for geometric motion, J. Sci. Comput. 54 (2013) 513–530.
[71]
T.P. Witelski, M. Bowen, ADI schemes for higher-order nonlinear diffusion equations, Appl. Numer. Math. 45 (2003) 331–351.
[72]
J.B. Greer, A.L. Bertozzi, G. Sapiro, Fourth order partial differential equations on general geometries, J. Comput. Phys. 216 (2006) 216–246.
[73]
H. Ji, A. Sadeghpour, Y.S. Ju, A.L. Bertozzi, Modelling film flows down a fibre influenced by nozzle geometry, J. Fluid Mech. 901 (2020).
[74]
H. Ji, C. Falcon, E. Sedighi, A. Sadeghpour, Y.S. Ju, A.L. Bertozzi, Thermally-driven coalescence in thin liquid film flowing down a fibre, J. Fluid Mech. 916 (2021).

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational Physics
Journal of Computational Physics  Volume 496, Issue C
Jan 2024
746 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 27 February 2024

Author Tags

  1. Surface tension
  2. Fiber coating
  3. Positivity preserving
  4. Finite difference scheme

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media