[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Coupled THINC and level set method: : A conservative interface capturing scheme with high-order surface representations

Published: 15 November 2018 Publication History

Highlights

Volume of fluid method with high-order representation for moving interface.
Rigorous conservation of mass/volume of the transported VOF field.
Sub-grid resolution for fine interfacial structures that are smaller than mesh size.
Easy-to-code and straightforward algorithm for 3D unstructured-grid.
Verified superior solution quality in comparison with classical VOF methods.

Abstract

In this paper, we propose a simple and accurate numerical method for capturing moving interfaces on fixed Eulerian grids by coupling the Tangent of Hyperbola Interface Capturing (THINC) method and Level Set (LS) method. The innovative and practically-significant aspects of the proposed method, so-called THINC/LS method, lie in (1) representing the interface with polynomial of high-order (arbitrary order in principle) rather than the plane representation commonly used in the Piecewise Linear Interface Calculation (PLIC) Volume of fluid (VOF) methods, (2) conserving rigorously the mass of the transported VOF field, (3) being able to resolving fine interface structures under mesh resolution, and (4) providing a straightforward and easy-to-code algorithm for 3D implementation. We verified the proposed scheme with the widely used benchmark tests. Numerical results show that this new method can obtain high-order accuracy for interface reconstruction and can produce more accurate results in capturing moving interfaces compared to the classical VOF methods.

References

[1]
S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys. 100 (1992) 25–37.
[2]
G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.-J. Jan, A front-tracking method for the computations of multiphase flow, J. Comput. Phys. 169 (2001) 708–759.
[3]
W. Rider, D. Kothe, A marker particle method for interface tracking, in: Sixth International Symposium on Computational Fluid Dynamics (ISCFD), 1995.
[4]
W. Rider, D. Kothe, Stretching and tearing interface tracking methods, in: 12th AIAA Computational Fluid Dynamics Conference, 1995.
[5]
G. Tryggvason, R. Scardovelli, S. Zaleski, Direct Numerical Simulations of Gas-Liquid Multiphase Flows, Cambridge University Press, 2011.
[6]
C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201–225.
[7]
D.L. Youngs, Time-Dependent Multi-Material Flow with Large Fluid Distortion, Academic Press, 1982, pp. 273–285.
[8]
B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging and fragmentation in multiphase flows with SURFER, J. Comput. Phys. 113 (1994) 134–147.
[9]
M. Rudman, Volume-tracking methods for interfacial flow calculations, Int. J. Numer. Methods Fluids 24 (1997) 671–691.
[10]
W.J. Rider, D.B. Kothe, Reconstructing volume tracking, J. Comput. Phys. 141 (1998) 112–152.
[11]
R. Scardovelli, S. Zaleski, Analytical relations connecting linear interfaces and volume fractions in rectangular grids, J. Comput. Phys. 164 (2000) 228–237.
[12]
E.G. Puckett, A volume-of-fluid interface tracking algorithm with applications to computing shock wave refraction, in: Proceedings of the Fourth International Symposium on Computational Fluid Dynamics, 1991, pp. 933–938.
[13]
J.E. Pilliod Jr, E.G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys. 199 (2004) 465–502.
[14]
S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys. 79 (1988) 12–49.
[15]
S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, 2003.
[16]
M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146–159.
[17]
W.F. Noh, P. Woodward, SLIC (simple line interface calculation), Lect. Notes Phys. 59 (1976) 273–285.
[18]
D.L. Youngs, An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code, Tech. Rep. Atomic Weapons Research Establishment (AWRE) Design Mathematics Division, 1984.
[19]
R. Scardovelli, S. Zaleski, Interface reconstruction with least-square fit and split Eulerian–Lagrangian advection, Int. J. Numer. Methods Fluids 41 (2003) 251–274.
[20]
E. Aulisa, S. Manservisi, R. Scardovelli, S. Zaleski, Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry, J. Comput. Phys. 225 (2007) 2301–2319.
[21]
E. Aulisa, S. Manservisi, R. Scardovelli, S. Zaleski, A geometrical area-preserving volume-of-fluid advection method, J. Comput. Phys. 192 (2003) 355–364.
[22]
A. Cervone, S. Manservisi, R. Scardovelli, S. Zaleski, A geometrical predictor–corrector advection scheme and its application to the volume fraction function, J. Comput. Phys. 228 (2009) 406–419.
[23]
S. Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys. 190 (2003) 572–600.
[24]
S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys. 228 (2009) 5838–5866.
[25]
Popinet, S. (2017): Gerris Flow Solver. http://gfs.sourceforge.net.
[26]
Popinet, S. (2017): Basilisk. http://basilisk.fr.
[27]
J. López, J. Hernández, P. Gómez, F. Faura, A volume of fluid method based on multidimensional advection and spline interface reconstruction, J. Comput. Phys. 195 (2004) 718–742.
[28]
J. López, C. Zanzi, P. Gómez, F. Faura, J. Hernández, A new volume of fluid method in three dimensions – Part II: piecewise-planar interface reconstruction with cubic-Bézier fit, Int. J. Numer. Methods Fluids 58 (2008) 923–944.
[29]
S. Diwakar, S.K. Das, T. Sundararajan, A quadratic spline based interface (QUASI) reconstruction algorithm for accurate tracking of two-phase flows, J. Comput. Phys. 228 (2009) 9107–9130.
[30]
F. Xiao, Y. Honma, T. Kono, A simple algebraic interface capturing scheme using hyperbolic tangent function, Int. J. Numer. Methods Fluids 48 (2005) 1023–1040.
[31]
F. Xiao, S. Ii, C. Chen, Revisit to the THINC scheme: a simple algebraic VOF algorithm, J. Comput. Phys. 230 (2011) 7086–7092.
[32]
S. Ii, K. Sugiyama, S. Takeuchi, S. Takagi, Y. Matsumoto, F. Xiao, An interface capturing method with a continuous function: the THINC method with multi-dimensional reconstruction, J. Comput. Phys. 231 (2012) 2328–2358.
[33]
S. Ii, B. Xie, F. Xiao, An interface capturing method with a continuous function: the THINC method on unstructured triangular and tetrahedral meshes, J. Comput. Phys. 259 (2014) 260–269.
[34]
B. Xie, S. Ii, F. Xiao, An efficient and accurate algebraic interface capturing method for unstructured grids in 2 and 3 dimensions: the THINC method with quadratic surface representation, Int. J. Numer. Methods Fluids 76 (2014) 1025–1042.
[35]
B. Xie, F. Xiao, Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: the THINC method with quadratic surface representation and Gaussian quadrature, J. Comput. Phys. 349 (2017) 415–440.
[36]
J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge University Press, 1999.
[37]
D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set method for improved interface capturing, J. Comput. Phys. 183 (2002) 83–116.
[38]
M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. Comput. Phys. 162 (2000) 301–337.
[39]
T. Ménard, S. Tanguy, A. Berlemont, Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet, Int. J. Multiph. Flow 33 (2007) 510–524.
[40]
X. Yang, A.J. James, J. Lowengrub, X. Zheng, V. Cristini, An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids, J. Comput. Phys. 217 (2006) 364–394.
[41]
D. Sun, W. Tao, A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows, Int. J. Heat Mass Transf. 53 (2010) 645–655.
[42]
W. Aniszewski, T. Ménard, M. Marek, Volume of Fluid (VOF) type advection methods in two-phase flow: a comparative study, Comput. Fluids 97 (2014) 52–73.
[43]
H. Zhao, A fast sweeping method for eikonal equations, Math. Comput. 74 (2005) 603–627.
[44]
G.-S. Jiang, D. Peng, Weighted ENO schemes for Hamilton–Jacobi equations, SIAM J. Sci. Comput. 21 (2000) 2126–2143.
[45]
C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988) 439–471.
[46]
S. Gottlieb, On high order strong stability preserving Runge–Kutta and multi step time discretizations, J. Sci. Comput. 25 (2005) 105–128.
[47]
S.J. Cummins, M.M. Francois, D.B. Kothe, Estimating curvature from volume fractions, Comput. Struct. 83 (2005) 425–434.
[48]
S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys. 31 (1979) 335–362.
[49]
D.J. Harvie, D.F. Fletcher, A new volume of fluid advection algorithm: the stream scheme, J. Comput. Phys. 162 (2000) 1–32.
[50]
D.J. Harvie, D.F. Fletcher, A new volume of fluid advection algorithm: the defined donating region scheme, Int. J. Numer. Methods Fluids 35 (2001) 151–172.
[51]
O. Ubbink, R. Issa, A method for capturing sharp fluid interfaces on arbitrary meshes, J. Comput. Phys. 153 (1999) 26–50.
[52]
K. Yokoi, Efficient implementation of THINC scheme: a simple and practical smoothed VOF algorithm, J. Comput. Phys. 226 (2007) 1985–2002.
[53]
J. Lopez, J. Hernandez, P. Gomez, F. Faura, An improved PLIC-VOF method for tracking thin fluid structures in incompressible two-phase flows, J. Comput. Phys. 208 (2005) 51–74.
[54]
E. Aulisa, S. Manservisi, R. Scardovelli, A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows, J. Comput. Phys. 188 (2003) 611–639.
[55]
M. Jemison, E. Loch, M. Sussman, M. Shashkov, M. Arienti, M. Ohta, Y. Wang, A coupled level set-moment of fluid method for incompressible two-phase flows, J. Sci. Comput. 54 (2013) 454–491.
[56]
R.J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal. 33 (1996) 627–665.
[57]
J. Hernández, J. López, P. Gómez, C. Zanzi, F. Faura, A new volume of fluid method in three dimensions – Part I: multidimensional advection method with face-matched flux polyhedra, Int. J. Numer. Methods Fluids 58 (2008) 897–921.
[58]
L. Jofre, O. Lehmkuhl, J. Castro, A. Oliva, A 3-D volume-of-fluid advection method based on cell-vertex velocities for unstructured meshes, Comput. Fluids 94 (2014) 14–29.
[59]
B. Xie, P. Jin, F. Xiao, An unstructured-grid numerical model for interfacial multiphase fluids based on multi-moment finite volume formulation and THINC method, Int. J. Multiph. Flow 89 (2017) 375–398.

Cited By

View all

Index Terms

  1. Coupled THINC and level set method: A conservative interface capturing scheme with high-order surface representations
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Journal of Computational Physics
          Journal of Computational Physics  Volume 373, Issue C
          Nov 2018
          1013 pages

          Publisher

          Academic Press Professional, Inc.

          United States

          Publication History

          Published: 15 November 2018

          Author Tags

          1. Moving interface
          2. Multiphase flow
          3. VOF
          4. THINC
          5. Level set
          6. High-order interface representation

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 25 Dec 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)VOF method in two-stage fourth order time-stepping frameworkJournal of Computational Physics10.1016/j.jcp.2023.112580496:COnline publication date: 27-Feb-2024
          • (2023)A robust high-resolution discrete-equations method for compressible multi-phase flow with accurate interface capturingJournal of Computational Physics10.1016/j.jcp.2023.112371491:COnline publication date: 15-Oct-2023
          • (2022)A novel high-order low-dissipation TENO-THINC scheme for hyperbolic conservation lawsJournal of Computational Physics10.1016/j.jcp.2021.110899452:COnline publication date: 1-Mar-2022
          • (2022)A consistent and conservative Phase-Field method for multiphase incompressible flowsJournal of Computational and Applied Mathematics10.1016/j.cam.2022.114116408:COnline publication date: 1-Jul-2022
          • (2021)A conservative level-set/finite-volume method on unstructured grids based on a central interpolation schemeJournal of Computational Physics10.1016/j.jcp.2021.110576444:COnline publication date: 1-Nov-2021
          • (2021)THINC scaling method that bridges VOF and level set schemesJournal of Computational Physics10.1016/j.jcp.2021.110323436:COnline publication date: 1-Jul-2021
          • (2020)Special issueJournal of Computational Physics10.1016/j.jcp.2019.108902402:COnline publication date: 1-Feb-2020

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media