[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A spacetime fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation

Published: 15 October 2017 Publication History

Abstract

We present a spacetime fractional AllenCahn phase-field model that describes the transport of the fluid mixture of two immiscible fluid phases. The space and time fractional order parameters control the sharpness and the decay behavior of the interface via a seamless transition of the parameters. Although they are shown to provide more accurate description of anomalous diffusion processes and sharper interfaces than traditional integer-order phase-field models do, fractional models yield numerical methods with dense stiffness matrices. Consequently, the resulting numerical schemes have significantly increased computational work and memory requirement. We develop a lossless fast numerical method for the accurate and efficient numerical simulation of the spacetime fractional phase-field model. Numerical experiments shows the utility of the fractional phase-field model and the corresponding fast numerical method.

References

[1]
G. Akagi, G. Schimpernab, A. Segatti, Fractional CahnHilliard, AllenCahn and porous medium equations, J. Differ. Equ., 261 (2016) 2935-2985.
[2]
I.S. Aranson, V.A. Kalatsky, V.M. Vinokur, Continuum field description of crack propagation, Phys. Rev. Lett., 85 (2000) 118.
[3]
G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, UK, 2000.
[4]
M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J. Hughes, C.M. Landis, A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Eng., 217 (2012) 77-95.
[5]
P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press, New York, 1995.
[6]
J.W. Cahn, J.E. Hilliard, Free energy of a non-uniform system, I: interfacial free energy, J. Chem. Phys., 28 (1958) 258-267.
[7]
J.W. Cahn, J.E. Hilliard, Free energy of a non-uniform system, III: nucleation in a two-component incompressible fluid, J. Chem. Phys., 31 (1959) 688-699.
[8]
R.H. Chan, M.K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996) 427-482.
[9]
Y. Chang, T.Y. Hou, B. Merriman, S. Osher, A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys., 124 (1996) 449-464.
[10]
I. Chakraborty, G. Biswas, P.S. Ghoshdastidar, A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids, Int. J. Heat Mass Transf., 58 (2013) 240-259.
[11]
W. Chen, S. Conde, C. Wang, X. Wang, S. Wise, A linear energy stable numerical scheme for epitaxial thin film growth model without slope selection, J. Sci. Comput., 52 (2012) 546-562.
[12]
V. Cristini, J. Blawzdziewicz, M. Loewenberg, Drop breakup in three-dimensional viscous flows, Phys. Fluids (1994present), 10 (1998) 1781-1783.
[13]
V. Cristini, J.S. Lowengrub, Q. Nie, Nonlinear simulation of tumor growth, J. Math. Biol., 46 (2003) 191-224.
[14]
P.J. Davis, Circulant Matrices, WileyIntersciences, New York, 1979.
[15]
M. Doi, Soft Matter Physics, Oxford University Press, Oxford, UK, 2013.
[16]
Q. Du, L. Zhang, L.Q. Chen, Diffuse-interface description of strain-dominated morphology of critical nuclei in phase transformations, Acta Mater., 56 (2008) 3568-3576.
[17]
D.A. Edwards, H. Brenner, D.T. Wasan, Interfacial Transport Processes and Rheology, ButterworthHeinemann, Stoneheam, MA, USA, 1991.
[18]
J. Glimm, J.W. Grove, X. Li, K.M. Shyue, Y. Zeng, Q. Zhang, Three-dimensional front tracking, SIAM J. Sci. Comput., 19 (1998) 703-727.
[19]
H.H. Hu, N.A. Patankar, M.Y. Zhu, Direct numerical simulations of fluidsolid systems using the arbitrary LagrangianEulerian technique, J. Comput. Phys., 169 (2001) 427-462.
[20]
Z. Hu, S.M. Wise, C. Wang, J.S. Lowengrub, Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation, J. Comput. Phys., 228 (2009) 5323-5339.
[21]
M. Ilic, F. Liu, I. Turner, V. Anh, Numerical approximation of a fractional-in-space diffusion equation, I, Fract. Calc. Appl. Anal., 8 (2005) 323-341.
[22]
D. Jacqmin, Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech., 402 (2000) 57-88.
[23]
A. Karma, D.A. Kessler, H. Levine, Phase-field model of mode III dynamic fracture, Phys. Rev. Lett., 87 (2001).
[24]
M. Kleman, O.D. Lavrentovich, Soft Matter Physics an Introduction, Springer-Verlag, New York, 2003.
[25]
X. Li, V. Cristini, Q. Nie, J.S. Lowengrub, Nonlinear three-dimensional simulation of solid tumor growth, Discrete Contin. Dyn. Syst., Ser. B, 7 (2007) 581-604.
[26]
Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007) 1533-1552.
[27]
C. Liu, J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D, 179 (2003) 211-228.
[28]
J.S. Lowengrub, H.B. Frieboes, F. Jin, Y. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, 23 (2010) R1-R9.
[29]
M.M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus, 2011.
[30]
R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000) 1-77.
[31]
R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, Math. Gen., 37 (2004) R161-R208.
[32]
D.A. Murio, Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56 (2008) 1138-1145.
[33]
B. Nestler, D. Danilov, P. Galenko, Crystal growth of pure substances: phase field simulations in comparison with analytical and experimental results, J. Comput. Phys., 207 (2005) 221-239.
[34]
I. Podlubny, Fractional Differential Equations, Academic Press, 1999.
[35]
R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000) 1-77.
[36]
J.C. Ramirez, C. Beckermann, A. Karma, H.J. Diepers, Phase-field modeling of binary alloy solidication with coupled heat and solute diffusion, Phys. Rev. E, 69 (2004).
[37]
J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science, Cambridge University Press, 1999.
[38]
J. Shen, C. Wang, X. Wang, S.M. Wise, Second-order convex splitting schemes for gradient flows with EhrlichSchwoebel-type energy: application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012) 105-125.
[39]
J. Shen, X. Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32 (2010) 1159-1179.
[40]
F. Song, C. Xu, G.K. Karniadakis, A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations, Comput. Methods Appl. Mech. Eng., 305 (2016) 376-404.
[41]
G. Strang, A proposal for Toeplitz matrix calculations, Stud. Appl. Math., 74 (1986) 171-176.
[42]
M. Sussman, K.M. Smith, M.Y. Hussaini, M. Ohta, R. Zhi-Wei, A sharp interface method for incompressible two-phase flows, J. Comput. Phys., 221 (2007) 469-505.
[43]
K. Takae, A. Onuki, Phase-field model of solidliquid phase transition with density difference and latent heat in velocity and elastic fields, Phys. Rev. E, 83 (2011).
[44]
S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100 (1992) 25-37.
[45]
H. Wang, N. Du, A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations, J. Comput. Phys., 240 (2013) 49-57.
[46]
C.S. Wu, D.L. Young, H.C. Wu, Simulations of multidimensional interfacial flows by an improved volume-of-fluid method, Int. J. Heat Mass Transf., 60 (2013) 739-755.
[47]
Q. Yang, F. Liu, I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 34 (2010) 200-218.
[48]
X. Yang, J. Zhao, Q. Wang, Numerical approximations for a phase field dendritic growth model based on the invariant energy quadratization approach, Int. J. Numer. Methods Eng. (2016).
[49]
J. Zhao, Q. Wang, A 3D hydrodynamic model for cytokinesis of eukaryotic cells, Commun. Comput. Phys., 9 (2016) 663-681.
[50]
J. Zhao, X. Yang, Y. Gong, Q. Wang, A novel linear second order unconditionally energy stable scheme for a hydrodynamic Q-tensor model of liquid crystals, Comput. Methods Appl. Mech. Eng., 318 (2017) 803-825.

Cited By

View all
  • (2024)Asymptotically Compatible Energy and Dissipation Law of the Nonuniform L2- Scheme for Time Fractional Allen–Cahn ModelJournal of Scientific Computing10.1007/s10915-024-02515-399:2Online publication date: 8-Apr-2024
  • (2023)Divide-and-Conquer Solver in Tensor-Train Format for d-Dimensional Time-Space Fractional Diffusion EquationsJournal of Scientific Computing10.1007/s10915-023-02259-696:1Online publication date: 5-Jun-2023
  • (2021)Highly efficient schemes for time-fractional Allen-Cahn equation using extended SAV approachNumerical Algorithms10.1007/s11075-021-01068-y88:3(1077-1108)Online publication date: 1-Nov-2021
  • Show More Cited By
  1. A spacetime fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Journal of Computational Physics
      Journal of Computational Physics  Volume 347, Issue C
      October 2017
      204 pages

      Publisher

      Academic Press Professional, Inc.

      United States

      Publication History

      Published: 15 October 2017

      Author Tags

      1. Fast solution method
      2. Fractional partial differential equation
      3. Fractional phase-field model
      4. Tunable decay behavior
      5. Tunable sharpness

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 21 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Asymptotically Compatible Energy and Dissipation Law of the Nonuniform L2- Scheme for Time Fractional Allen–Cahn ModelJournal of Scientific Computing10.1007/s10915-024-02515-399:2Online publication date: 8-Apr-2024
      • (2023)Divide-and-Conquer Solver in Tensor-Train Format for d-Dimensional Time-Space Fractional Diffusion EquationsJournal of Scientific Computing10.1007/s10915-023-02259-696:1Online publication date: 5-Jun-2023
      • (2021)Highly efficient schemes for time-fractional Allen-Cahn equation using extended SAV approachNumerical Algorithms10.1007/s11075-021-01068-y88:3(1077-1108)Online publication date: 1-Nov-2021
      • (2021)A Novel Scheme to Capture the Initial Dramatic Evolutions of Nonlinear Subdiffusion EquationsJournal of Scientific Computing10.1007/s10915-021-01672-z89:3Online publication date: 10-Nov-2021
      • (2021)A Second Order Energy Dissipative Scheme for Time Fractional L Gradient Flows using SAV ApproachJournal of Scientific Computing10.1007/s10915-021-01667-w90:1Online publication date: 26-Nov-2021
      • (2021)On Diagonal Dominance of FEM Stiffness Matrix of Fractional Laplacian and Maximum Principle Preserving Schemes for the Fractional Allen–Cahn EquationJournal of Scientific Computing10.1007/s10915-020-01363-186:2Online publication date: 7-Jan-2021
      • (2021)Fractional SUPG finite element formulation for multi-dimensional fractional advection diffusion equationsComputational Mechanics10.1007/s00466-020-01951-w67:2(601-617)Online publication date: 1-Feb-2021
      • (2020)Superconvergence Error Estimate of a Finite Element Method on Nonuniform Time Meshes for Reaction–Subdiffusion EquationsJournal of Scientific Computing10.1007/s10915-020-01290-184:2Online publication date: 3-Aug-2020
      • (2020)Simple maximum principle preserving time-stepping methods for time-fractional Allen-Cahn equationAdvances in Computational Mathematics10.1007/s10444-020-09782-246:2Online publication date: 7-Apr-2020

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media