[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Graph product structure for non-minor-closed classes

Published: 01 September 2023 Publication History

Abstract

Dujmović et al. [J. ACM '20] proved that every planar graph is isomorphic to a subgraph of the strong product of a bounded treewidth graph and a path. Analogous results were obtained for graphs of bounded Euler genus or apex-minor-free graphs. These tools have been used to solve longstanding problems on queue layouts, non-repetitive colouring, p-centered colouring, and adjacency labelling. This paper proves analogous product structure theorems for various non-minor-closed classes. One noteable example is k-planar graphs (those with a drawing in the plane in which each edge is involved in at most k crossings). We prove that every k-planar graph is isomorphic to a subgraph of the strong product of a graph of treewidth O ( k 5 ) and a path. This is the first result of this type for a non-minor-closed class of graphs. It implies, amongst other results, that k-planar graphs have non-repetitive chromatic number upper-bounded by a function of k. All these results generalise for drawings of graphs on arbitrary surfaces. In fact, we work in a more general setting based on so-called shortcut systems, which are of independent interest. This leads to analogous results for certain types of map graphs, string graphs, graph powers, and nearest neighbour graphs.

References

[1]
Bernardo M. Ábrego, Ruy Fabila Monroy, Silvia Fernández-Merchant, David Flores-Peñaloza, Ferran Hurtado, Vera Sacristán, Maria Saumell, On crossing numbers of geometric proximity graphs, Comput. Geom. 44 (4) (2011) 216–233.
[2]
Martin Aigner, Günter M. Ziegler, Proofs from the Book, 4th edn., Springer, 2010.
[3]
Miklós Ajtai, Vašek Chvátal, Monroe M. Newborn, Endre Szemerédi, Crossing-free subgraphs, Ann. Discrete Math. 12 (1982) 9–12.
[4]
Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann, Michael Kaufmann, Sergey Pupyrev, Queue layouts of planar 3-trees, Algorithmica 82 (2020) 2564–2585.
[5]
Noga Alon, Jarosław Grytczuk, Mariusz Hałuszczak, Oliver Riordan, Nonrepetitive colorings of graphs, Random Struct. Algorithms 21 (3–4) (2002) 336–346.
[6]
Laszlo Babai, F.R.K. Chung, Paul Erdős, Ronald L. Graham, J.H. Spencer, On graphs which contain all sparse graphs, in: Theory and Practice of Combinatorics. A Collection of Articles Honoring Anton Kotzig on the Occasion of His Sixtieth Birthday, Elsevier, 1982, pp. 21–26.
[7]
Michael A. Bekos, Giordano Da Lozzo, Svenja Griesbach, Martin Gronemann, Fabrizio Montecchiani, Chrysanthi N. Raftopoulou, Book embeddings of nonplanar graphs with small faces in few pages, in: Sergio Cabello, Danny Z. Chen (Eds.), 36th International Symposium on Computational Geometry, in: LIPIcs, vol. 164, SoCG 2020, June 23-26, 2020, Zürich, Switzerland, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 16:1–16:17. arXiv:2003.07655.
[8]
Hans L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theor. Comput. Sci. 209 (1–2) (1998) 1–45.
[9]
Bonnet, Édouard; Kwon, O-joung; Wood, David R. (2022): Reduced bandwidth: a qualitative strengthening of twin-width in minor-closed classes (and beyond). arXiv:2202.11858.
[10]
Prosenjit Bose, Vida Dujmovic Ferran Hurtado, John Iacono, Stefan Langerman, Henk Meijer, Vera Sacristán Adinolfi, Maria Saumell, David R. Wood, Proximity graphs: E, δ, Δ, χ and ω, Int. J. Comput. Geom. Appl. 22 (5) (2012) 439–470.
[11]
Bose, Prosenjit; Dujmović, Vida; Javarsineh, Mehrnoosh; Morin, Pat (2020): Asymptotically optimal vertex ranking of planar graphs. arXiv:2007.06455.
[12]
Prosenjit Bose, Pat Morin, Saeed Odak, An optimal algorithm for product structure in planar graphs, in: Artur Czumaj, Qin Xin (Eds.), Proc. 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 227, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp. 19:1–19:14.
[13]
Prosenjit Bose, Pat Morin, Ivan Stojmenović, Jorge Urrutia, Routing with guaranteed delivery in ad hoc wireless networks, Wirel. Netw. 7 (6) (2001) 609–616.
[14]
Franz J. Brandenburg, Characterizing and recognizing 4-map graphs, Algorithmica 81 (5) (2019) 1818–1843.
[15]
Brandenburg, Franz J. (2020): Book embeddings of k-map graphs. arXiv:2012.06874.
[16]
Zhi-Zhong Chen, Michelangelo Grigni, Christos H. Papadimitriou, Map graphs, J. ACM 49 (2) (2002) 127–138.
[17]
Zhi-Zhong Chen, Michelangelo Grigni, Christos H. Papadimitriou, Recognizing hole-free 4-map graphs in cubic time, Algorithmica 45 (2) (2006) 227–262.
[18]
Reinhard Diestel, Graph Theory, Graduate Texts in Mathematics, vol. 173, 5th edn., Springer, 2018.
[19]
Marc Distel, Robert Hickingbotham, Tony Huynh, David R. Wood, Improved product structure for graphs on surfaces, Discrete Math. Theor. Comput. Sci. 24 (2) (2022) 6.
[20]
Michał Dębski, Stefan Felsner, Piotr Micek, Felix Schröder, Improved bounds for centered colorings, Adv. Combust. 8 (2021).
[21]
Vida Dujmović, David Eppstein, David R. Wood, Structure of graphs with locally restricted crossings, SIAM J. Discrete Math. 31 (2) (2017) 805–824.
[22]
Vida Dujmović, Louis Esperet, Cyril Gavoille, Gwenaël Joret, Piotr Micek, Pat Morin, Adjacency labelling for planar graphs (and beyond), J. ACM 68 (6) (2021) 42.
[23]
Vida Dujmović, Louis Esperet, Gwenaël Joret, Bartosz Walczak, David R. Wood, Planar graphs have bounded nonrepetitive chromatic number, Adv. Combust. 5 (2020).
[24]
Vida Dujmović, Louis Esperet, Pat Morin, Bartosz Walczak, David R. Wood, Clustered 3-colouring graphs of bounded degree, Comb. Probab. Comput. 31 (1) (2022) 123–135.
[25]
Vida Dujmović, Gwenaël Joret, Jakub Kozik, David R. Wood, Nonrepetitive colouring via entropy compression, Combinatorica 36 (6) (2016) 661–686.
[26]
Vida Dujmovic, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, David R. Wood, Planar graphs have bounded queue-number, J. ACM 67 (4) (2020) 22:1–22:38.
[27]
Vida Dujmović, Pat Morin, David R. Wood, Layered separators in minor-closed graph classes with applications, J. Comb. Theory, Ser. B 127 (2017) 111–147.
[28]
Zdeněk Dvořák, Tony Huynh, Gwenaël Joret, Chun-Hung Liu, David R. Wood, Notes on graph product structure theory, in: David R. Wood, Jan de Gier, Cheryl E. Praeger, Terence Tao (Eds.), 2019-20 MATRIX Annals, Springer, 2021, pp. 513–533. arXiv:2001.08860.
[29]
Ehab S. Elmallah, Charles J. Colbourn, On two dual classes of planar graphs, Discrete Math. 80 (1) (1990) 21–40.
[30]
Esperet, Louis; Joret, Gwenaël; Morin, Pat (2020): Sparse universal graphs for planarity. arXiv:2010.05779.
[31]
Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Bidimensionality and geometric graphs, in: Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, 2012, pp. 1563–1575.
[32]
Jacob Fox, János Pach, A separator theorem for string graphs and its applications, Comb. Probab. Comput. 19 (3) (2010) 371–390.
[33]
Jacob Fox, János Pach, Applications of a new separator theorem for string graphs, Comb. Probab. Comput. 23 (1) (2014) 66–74.
[34]
Daniel J. Harvey, David R. Wood, Parameters tied to treewidth, J. Graph Theory 84 (4) (2017) 364–385.
[35]
Lenwood S. Heath, F. Thomson Leighton, Arnold L. Rosenberg, Comparing queues and stacks as mechanisms for laying out graphs, SIAM J. Discrete Math. 5 (3) (1992) 398–412.
[36]
Sampath Kannan, Moni Naor, Steven Rudich, Implicit representation of graphs, SIAM J. Discrete Math. 5 (4) (1992) 596–603.
[37]
Kolja Knauer, Torsten Ueckerdt, Simple treewidth, in: Pavel Rytír (Ed.), Midsummer Combinatorial Workshop Prague, 2012.
[38]
Stephen G. Kobourov, Giuseppe Liotta, Fabrizio Montecchiani, An annotated bibliography on 1-planarity, Comput. Sci. Rev. 25 (2017) 49–67.
[39]
Kratochvíl, Jan; Vaner, Michal (2012): A note on planar partial 3-trees. arXiv:1210.8113.
[40]
F. Thomson Leighton, Complexity Issues in VLSI, MIT Press, Cambridge, MA, 1983.
[41]
Bojan Mohar, Carsten Thomassen, Graphs on Surfaces, Johns Hopkins University Press, 2001.
[42]
Jaroslav Nešetřil, Patrice Ossona de Mendez Sparsity, Algorithms and Combinatorics, vol. 28, Springer, 2012.
[43]
János Pach, Géza Tóth, Recognizing string graphs is decidable, Discrete Comput. Geom. 28 (4) (2002) 593–606.
[44]
Michał Pilipczuk, Sebastian Siebertz, Polynomial bounds for centered colorings on proper minor-closed graph classes, J. Comb. Theory, Ser. B 151 (2021) 111–147.
[45]
Bruce A. Reed, Algorithmic Aspects of Tree Width, Recent Advances in Algorithms and Combinatorics, vol. 11, Springer, 2003, pp. 85–107.
[46]
Torsten Ueckerdt, David R. Wood, Wendy Yi, An improved planar graph product structure theorem, Electron. J. Comb. 29 (2022) 2.51.
[47]
Jan van den Heuvel, David R. Wood, Improper colourings inspired by Hadwiger's conjecture, J. Lond. Math. Soc. 98 (2018) 129–148. arXiv:1704.06536.
[48]
David R. Wood, Nonrepetitive graph colouring, Electron. J. Comb. DS24 (2021).
[49]
Xuding Zhu, Colouring graphs with bounded generalized colouring number, Discrete Math. 309 (18) (2009) 5562–5568.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Combinatorial Theory Series B
Journal of Combinatorial Theory Series B  Volume 162, Issue C
Sep 2023
244 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 September 2023

Author Tags

  1. Graph product
  2. Shortcut system
  3. Framed graph
  4. k-planar graph
  5. Graph power
  6. Map graph
  7. Nearest neighbour graph
  8. Queue layout
  9. Non-repetitive colouring
  10. Centered colouring

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media