[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

On-device modeling of user’s social context and familiar places from smartphone-embedded sensor data

Published: 01 September 2022 Publication History

Abstract

Context modeling and recognition represent complex tasks that allow mobile and ubiquitous computing applications to adapt to the user’s situation. The real advantage of context-awareness in mobile environments mainly relies on the prompt system’s and applications’ reaction to context changes. Current solutions mainly focus on limited context information generally processed on centralized architectures, potentially exposing users’ personal data to privacy leakage, and missing personalization features. For these reasons on-device context modeling and recognition represent the current research trend in this area. Among the different information characterizing the user’s context in mobile environments, social interactions and visited locations remarkably contribute to the characterization of daily life scenarios. In this paper we propose a novel, unsupervised and lightweight approach to model the user’s social context and her locations based on ego networks directly on the user mobile device. Relying on this model, the system is able to extract high-level and semantic-rich context features from smartphone-embedded sensors data. Specifically, for the social context it exploits data related to both physical and cyber social interactions among users and their devices. As far as location context is concerned, we assume that it is more relevant to model the familiarity degree of a specific location for the user’s context than the raw location data, both in terms of GPS coordinates and proximity devices. We demonstrate the effectiveness of the proposed approach with 3 different sets of experiments by using 5 real-world datasets collected from a total of 956 personal mobile devices. Specifically, we assess the structure of the social and location ego networks, we provide a semantic evaluation of the proposed models and a complexity evaluation in terms of mobile computing performance. Finally, we demonstrate the relevance of the extracted features by showing the performance of 3 different machine learning algorithms to recognize daily-life situations, obtaining an improvement of 3% of AUROC, 9% of Precision, and 5% in terms of Recall with respect to use only features related to physical context.

Highlights

On-device modeling of social relationships and familiar places from mobile sensors.
Use of ego networks to extract semantic-rich context features in mobile scenarios.
Heterogeneous data fusion for user’s context recognition.
Semantic evaluation of social and location ego networks with 5 real-world datasets.
Theoretical and empirical evaluation of the models’ complexity.

References

[1]
Aharony N., Pan W., Ip C., Khayal I., Pentland A., Social fMRI: Investigating and shaping social mechanisms in the real world, Pervasive Mob. Comput. 7 (6) (2011) 643–659,. The Ninth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom 2011). URL http://www.sciencedirect.com/science/article/pii/S1574119211001246.
[2]
Arnaboldi V., Campana M.G., Delmastro F., Pagani E., A personalized recommender system for pervasive social networks, Pervasive Mob. Comput. 36 (2017) 3–24,. Special Issue on Pervasive Social Computing. URL https://www.sciencedirect.com/science/article/pii/S1574119216301365.
[3]
Arnaboldi V., Conti M., Passarella A., Dunbar R., Dynamics of personal social relationships in online social networks: A study on Twitter, in: Proceedings of the First ACM Conference on Online Social Networks, in: COSN ’13, Association for Computing Machinery, New York, NY, USA, 2013, pp. 15–26,.
[4]
Arnaboldi V., Conti M., Passarella A., Dunbar R.I., Online social networks and information diffusion: The role of ego networks, Online Soc. Netw. Media 1 (2017) 44–55,. URL https://www.sciencedirect.com/science/article/pii/S2468696417300150.
[5]
Arnaboldi V., Passarella A., Conti M., Dunbar R.I., Chapter 2 - Human social networks, in: Arnaboldi V., Passarella A., Conti M., Dunbar R.I. (Eds.), Online Social Networks, in: Computer Science Reviews and Trends, Elsevier, Boston, 2015, pp. 9–35,. URL https://www.sciencedirect.com/science/article/pii/B9780128030233000023.
[6]
Baldi P., Sadowski P.J., Understanding dropout, Adv. Neural Inf. Process. Syst. 26 (2013) 2814–2822.
[7]
Baldominos A., Cervantes A., Saez Y., Isasi P., A comparison of machine learning and deep learning techniques for activity recognition using mobile devices, Sensors 19 (3) (2019),. URL https://www.mdpi.com/1424-8220/19/3/521.
[8]
Bilecen B., Gamper M., Lubbers M.J., The missing link: Social network analysis in migration and transnationalism, Social Networks 53 (2018) 1–3,. The missing link: Social network analysis in migration and transnationalism. URL https://www.sciencedirect.com/science/article/pii/S0378873317302575.
[9]
Bliss C.A., Kloumann I.M., Harris K.D., Danforth C.M., Dodds P.S., Twitter reciprocal reply networks exhibit assortativity with respect to happiness, J. Comput. Sci. 3 (5) (2012) 388–397,. Advanced Computing Solutions for Health Care and Medicine. URL https://www.sciencedirect.com/science/article/pii/S187775031200049X.
[10]
Boldrini C., Toprak M., Conti M., Passarella A., Twitter and the press: An ego-centred analysis, in: Companion Proceedings of the the Web Conference 2018, in: WWW ’18, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 2018, pp. 1471–1478,.
[11]
Bradley A.P., The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognit. 30 (7) (1997) 1145–1159,. URL https://www.sciencedirect.com/science/article/pii/S0031320396001422.
[12]
Buda T.S., Khwaja M., Matic A., Outliers in smartphone sensor data reveal outliers in daily happiness, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5 (1) (2021),.
[13]
Campana M.G., Chatzopoulos D., Delmastro F., Hui P., Lightweight modeling of user context combining physical and virtual sensor data, in: Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, in: UbiComp ’18, Association for Computing Machinery, New York, NY, USA, 2018, pp. 1309–1320,.
[14]
Campana M.G., Delmastro F., COMPASS: Unsupervised and online clustering of complex human activities from smartphone sensors, Expert Syst. Appl. (2021),. URL https://www.sciencedirect.com/science/article/pii/S0957417421005650.
[15]
Campana M.G., Delmastro F., MyDigitalFootprint: An extensive context dataset for pervasive computing applications at the edge, Pervasive Mob. Comput. 70 (2021),. URL https://www.sciencedirect.com/science/article/pii/S1574119220301383.
[16]
Camps-Mur D., Garcia-Saavedra A., Serrano P., Device-to-device communications with Wi-Fi Direct: overview and experimentation, IEEE Wirel. Commun. 20 (3) (2013) 96–104,.
[17]
Cao H., Xu F., Sankaranarayanan J., Li Y., Samet H., Habit2vec: Trajectory semantic embedding for living pattern recognition in population, IEEE Trans. Mob. Comput. 19 (5) (2020) 1096–1108,.
[18]
Capponi A., Fiandrino C., Kantarci B., Foschini L., Kliazovich D., Bouvry P., A survey on mobile crowdsensing systems: Challenges, solutions, and opportunities, IEEE Commun. Surv. Tutor. 21 (3) (2019) 2419–2465.
[19]
Cheema M.A., Indoor location-based services: Challenges and opportunities, SIGSPATIAL Spec. 10 (2) (2018) 10–17,.
[20]
Chen Z., Lin M., Chen F., Lane N.D., Cardone G., Wang R., Li T., Chen Y., Choudhury T., Campbell A.T., Unobtrusive sleep monitoring using smartphones, in: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, 2013, pp. 145–152.
[21]
Chen D., Zhao H., Data security and privacy protection issues in cloud computing, in: 2012 International Conference on Computer Science and Electronics Engineering, Vol. 1, 2012, pp. 647–651,.
[22]
Chiang M., Zhang T., Fog and IoT: An overview of research opportunities, IEEE Internet Things J. 3 (6) (2016) 854–864,.
[23]
Ciabattoni L., Ferracuti F., Longhi S., Pepa L., Romeo L., Verdini F., Real-time mental stress detection based on smartwatch, in: 2017 IEEE International Conference on Consumer Electronics (ICCE), 2017, pp. 110–111,.
[24]
Comaniciu D., Meer P., Mean shift: a robust approach toward feature space analysis, IEEE Trans. Pattern Anal. Mach. Intell. 24 (5) (2002) 603–619.
[25]
Conti M., Das S.K., Bisdikian C., Kumar M., Ni L.M., Passarella A., Roussos G., Tröster G., Tsudik G., Zambonelli F., Looking ahead in pervasive computing: Challenges and opportunities in the era of cyber–physical convergence, Pervasive Mob. Comput. 8 (1) (2012) 2–21,. URL https://www.sciencedirect.com/science/article/pii/S1574119211001271.
[26]
Conti M., Passarella A., The internet of people: A human and data-centric paradigm for the next generation internet, Comput. Commun. 131 (2018) 51–65,. COMCOM 40 years. URL https://www.sciencedirect.com/science/article/pii/S0140366418305127.
[27]
Davis K., Owusu E., Bastani V., Marcenaro L., Hu J., Regazzoni C., Feijs L., Activity recognition based on inertial sensors for ambient assisted living, in: 2016 19th International Conference on Information Fusion (FUSION), 2016, pp. 371–378.
[28]
Do T.M.T., Gatica-Perez D., Where and what: Using smartphones to predict next locations and applications in daily life, Pervasive Mob. Comput. 12 (2014) 79–91,. URL https://www.sciencedirect.com/science/article/pii/S1574119213000576.
[29]
Dunbar R.I., The social brain hypothesis, Evol. Anthropol.: Issues News Rev.: Issues News Rev. 6 (5) (1998) 178–190.
[30]
Dunbar R., Arnaboldi V., Conti M., Passarella A., The structure of online social networks mirrors those in the offline world, Social Networks 43 (2015) 39–47,. URL http://www.sciencedirect.com/science/article/pii/S0378873315000313.
[31]
Ehatisham-ul-Haq M., Awais Azam M., Asim Y., Amin Y., Naeem U., Khalid A., Using smartphone accelerometer for human physical activity and context recognition in-the-wild, Procedia Comput. Sci. 177 (2020) 24–31,. The 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2020) / The 10th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH 2020) / Affiliated Workshops. URL https://www.sciencedirect.com/science/article/pii/S1877050920322729.
[32]
Eichinger T., Beierle F., Papke R., Rebscher L., Tran H.C., Trzeciak M., On gossip-based information dissemination in pervasive recommender systems, in: Proceedings of the 13th ACM Conference on Recommender Systems, in: RecSys ’19, Association for Computing Machinery, New York, NY, USA, 2019, pp. 442–446,.
[33]
Ester M., Kriegel H.-P., Sander J., Xu X., et al., A density-based algorithm for discovering clusters in large spatial databases with noise, in: Kdd, Vol. 96, 1996, pp. 226–231.
[34]
Fang S.-H., Fei Y.-X., Xu Z., Tsao Y., Learning transportation modes from smartphone sensors based on deep neural network, IEEE Sens. J. 17 (18) (2017) 6111–6118,.
[35]
Fawcett T., An introduction to ROC analysis, Pattern Recognit. Lett. 27 (8) (2006) 861–874,. ROC Analysis in Pattern Recognition. URL https://www.sciencedirect.com/science/article/pii/S016786550500303X.
[36]
Gjoreski M., Janko V., Slapničar G., Mlakar M., Reščič N., Bizjak J., Drobnič V., Marinko M., Mlakar N., Luštrek M., Gams M., Classical and deep learning methods for recognizing human activities and modes of transportation with smartphone sensors, Inf. Fusion 62 (2020) 47–62,. URL https://www.sciencedirect.com/science/article/pii/S1566253520302566.
[37]
Hu J., Yang H., Lyu M.R., King I., Man-Cho So A., Online nonlinear AUC maximization for imbalanced data sets, IEEE Trans. Neural Netw. Learn. Syst. 29 (4) (2018) 882–895,.
[38]
Hui P., Crowcroft J., Yoneki E., BUBBLE rap: Social-based forwarding in delay-tolerant networks, IEEE Trans. Mob. Comput. 10 (11) (2011) 1576–1589,.
[39]
Ioffe S., Szegedy C., Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Bach F., Blei D. (Eds.), Proceedings of the 32nd International Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 37, PMLR, Lille, France, 2015, pp. 448–456. URL http://proceedings.mlr.press/v37/ioffe15.html.
[40]
Kingma D.P., Ba J., Adam: A method for stochastic optimization, 2014, arXiv preprint arXiv:1412.6980.
[41]
Krawczyk B., Learning from imbalanced data: open challenges and future directions, Prog. Artif. Intell. 5 (4) (2016) 221–232,.
[42]
Krings S., Yigitbas E., Jovanovikj I., Sauer S., Engels G., Development framework for context-aware augmented reality applications, in: Companion Proceedings of the 12th ACM SIGCHI Symposium on Engineering Interactive Computing Systems, in: EICS ’20 Companion, Association for Computing Machinery, New York, NY, USA, 2020,.
[43]
Li L., Jamieson K., DeSalvo G., Rostamizadeh A., Talwalkar A., Hyperband: A novel bandit-based approach to hyperparameter optimization, J. Mach. Learn. Res. 18 (1) (2017) 6765–6816.
[44]
Liu S., Jiang Y., Striegel A., Face-to-face proximity estimationusing bluetooth on smartphones, IEEE Trans. Mob. Comput. 13 (4) (2014) 811–823,.
[45]
Liu Y., Yang C., Jiang L., Xie S., Zhang Y., Intelligent edge computing for IoT-based energy management in smart cities, IEEE Netw. 33 (2) (2019) 111–117,.
[46]
Lucia W., Ferrari E., EgoCentric: Ego networks for knowledge-based short text classification, in: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, in: CIKM ’14, Association for Computing Machinery, New York, NY, USA, 2014, pp. 1079–1088,.
[47]
Ma Z., Ma J., Miao Y., Liu X., Choo K.-K.R., Yang R., Wang X., Lightweight privacy-preserving medical diagnosis in edge computing, IEEE Trans. Serv. Comput. (2020) 1,.
[48]
Morales J., Akopian D., Physical activity recognition by smartphones, a survey, Biocybern. Biomed. Eng. 37 (3) (2017) 388–400,. URL https://www.sciencedirect.com/science/article/pii/S020852161630314X.
[49]
Nielsen F., Hierarchical clustering, in: Introduction to HPC with MPI for Data Science, Springer International Publishing, Cham, 2016, pp. 195–211,.
[50]
Niu X., Wang S., Wu C.Q., Li Y., Wu P., Zhu J., On a clustering-based mining approach with labeled semantics for significant place discovery, Inform. Sci. 578 (2021) 37–63,. URL https://www.sciencedirect.com/science/article/pii/S0020025521007404.
[51]
Olla P., Shimskey C., Mhealth taxonomy: a literature survey of mobile health applications, Health Technol. 4 (4) (2015) 299–308,.
[52]
Ollivier K., Boldrini C., Passarella A., Conti M., Structural invariants in individuals language use: The “ego network” of words, in: Aref S., Bontcheva K., Braghieri M., Dignum F., Giannotti F., Grisolia F., Pedreschi D. (Eds.), Social Informatics, Springer International Publishing, Cham, 2020, pp. 267–282.
[53]
O’Malley T., Bursztein E., Long J., Chollet F., Jin H., Invernizzi L., et al., KerasTuner, 2019, https://github.com/keras-team/keras-tuner.
[54]
Paul P., George T., An effective approach for human activity recognition on smartphone, in: 2015 IEEE International Conference on Engineering and Technology (ICETECH), 2015, pp. 1–3,.
[55]
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.
[56]
Pike S., Lubell M., Geography and social networks in transportation mode choice, J. Transp. Geogr. 57 (2016) 184–193,. URL https://www.sciencedirect.com/science/article/pii/S0966692316306111.
[57]
Qiu G., Guo D., Shen Y., Tang G., Chen S., Mobile semantic-aware trajectory for personalized location privacy preservation, IEEE Internet Things J. 8 (21) (2021) 16165–16180,.
[58]
Quadri C., Zignani M., Gaito S., Rossi G.P., Feature-rich ego-network circles in mobile phone graphs: Tie multiplexity and the role of alters, in: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2018, pp. 1280–1285,.
[59]
Rawassizadeh R., Momeni E., Dobbins C., Gharibshah J., Pazzani M., Scalable daily human behavioral pattern mining from multivariate temporal data, IEEE Trans. Knowl. Data Eng. 28 (11) (2016) 3098–3112,.
[60]
Rawassizadeh R., Momeni E., Dobbins C., Mirza-Babaei P., Rahnamoun R., Lesson learned from collecting quantified self information via mobile and wearable devices, J. Sensor Actuator Netw. 4 (4) (2015) 315–335,. URL https://www.mdpi.com/2224-2708/4/4/315.
[61]
Rawassizadeh R., Pierson T.J., Peterson R., Kotz D., NoCloud: Exploring network disconnection through on-device data analysis, IEEE Pervasive Comput. 17 (1) (2018) 64–74,.
[62]
Rawassizadeh R., Tomitsch M., Nourizadeh M., Momeni E., Peery A., Ulanova L., Pazzani M., Energy-efficient integration of continuous context sensing and prediction into smartwatches, Sensors 15 (9) (2015) 22616–22645,. URL https://www.mdpi.com/1424-8220/15/9/22616.
[63]
Rawassizadeh R., Tomitsch M., Wac K., Tjoa A.M., UbiqLog: a generic mobile phone-based life-log framework, Pers. Ubiquitous Comput. 17 (4) (2013) 621–637.
[64]
Roberts S.B.G., Dunbar R.I.M., Managing relationship decay, Human Nature 26 (4) (2015) 426–450,.
[65]
Roberts S.G., Dunbar R.I., Pollet T.V., Kuppens T., Exploring variation in active network size: Constraints and ego characteristics, Social Networks 31 (2) (2009) 138–146,. URL https://www.sciencedirect.com/science/article/pii/S0378873309000033.
[66]
Sapiezynski P., Stopczynski A., Lassen D.D., Lehmann S., Interaction data from the copenhagen networks study, Sci. Data 6 (1) (2019) 315,.
[67]
Satyanarayanan M., The emergence of edge computing, Computer 50 (1) (2017) 30–39,.
[68]
Shelke S., Harbour J., Aksanli B., Building an intelligent and efficient smart space to detect human behavior in common areas, in: 2018 International Symposium on Networks, Computers and Communications (ISNCC), 2018, pp. 1–6,.
[69]
Shi W., Dustdar S., The promise of edge computing, Computer 49 (5) (2016) 78–81,.
[70]
Shultz S., Dunbar R., Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality, Proc. Natl. Acad. Sci. 107 (50) (2010) 21582–21586,. arXiv:https://www.pnas.org/content/107/50/21582.full.pdf. URL https://www.pnas.org/content/107/50/21582.
[71]
Sibson R., SLINK: An optimally efficient algorithm for the single-link cluster method, Comput. J. 16 (1) (1973) 30–34,. arXiv:https://academic.oup.com/comjnl/article-pdf/16/1/30/1196082/160030.pdf.
[72]
Sîrbu A., Andrienko G., Andrienko N., Boldrini C., Conti M., Giannotti F., Guidotti R., Bertoli S., Kim J., Muntean C.I., Pappalardo L., Passarella A., Pedreschi D., Pollacci L., Pratesi F., Sharma R., Human migration: the big data perspective, Int. J. Data Sci. Anal. 11 (4) (2021) 341–360,.
[73]
Tabassum S., Pereira F.S.F., Fernandes S., Gama J., Social network analysis: An overview, WIREs Data Min. Knowl. Discov. 8 (5) (2018),. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1256. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1256.
[74]
T’Jonck K., Pang B., Hallez H., Boydens J., Optimizing the bluetooth low energy service discovery process, Sensors 21 (11) (2021),. URL https://www.mdpi.com/1424-8220/21/11/3812.
[75]
Vahdat-Nejad H., Ramazani A., Mohammadi T., Mansoor W., A survey on context-aware vehicular network applications, Veh. Commun. 3 (2016) 43–57,. URL https://www.sciencedirect.com/science/article/pii/S2214209616000036.
[76]
Vaizman Y., Ellis K., Lanckriet G., Recognizing detailed human context in the wild from smartphones and smartwatches, IEEE Pervasive Comput. 16 (4) (2017) 62–74.
[77]
Vaizman Y., Weibel N., Lanckriet G., Context recognition in-the-wild: Unified model for multi-modal sensors and multi-label classification, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1 (4) (2018),.
[78]
Voicu R.-A., Dobre C., Bajenaru L., Ciobanu R.-I., Human physical activity recognition using smartphone sensors, Sensors 19 (3) (2019),. URL https://www.mdpi.com/1424-8220/19/3/458.
[79]
Wang Q., Gao J., Zhou T., Hu Z., Tian H., Critical size of ego communication networks, EPL (Europhys. Lett.) 114 (5) (2016) 58004,.
[80]
Xiang R., Neville J., Rogati M., Modeling relationship strength in online social networks, in: Proceedings of the 19th International Conference on World Wide Web, in: WWW ’10, Association for Computing Machinery, New York, NY, USA, 2010, pp. 981–990,.
[81]
Yu D., Li Y., Xu F., Zhang P., Kostakos V., Smartphone app usage prediction using points of interest, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1 (4) (2018),.
[82]
Yürür O., Liu C.H., Sheng Z., Leung V.C.M., Moreno W., Leung K.K., Context-awareness for mobile sensing: A survey and future directions, IEEE Commun. Surv. Tutor. 18 (1) (2016) 68–93.
[83]
Zebin T., Scully P.J., Peek N., Casson A.J., Ozanyan K.B., Design and implementation of a convolutional neural network on an edge computing smartphone for human activity recognition, IEEE Access 7 (2019) 133509–133520,.
[84]
Zhang X., Butts C.T., Activity correlation spectroscopy: a novel method for inferring social relationships from activity data, Soc. Netw. Anal. Min. 7 (1) (2016) 1,.
[85]
Zhao Y., Song W., Survey on social-aware data dissemination over mobile wireless networks, IEEE Access 5 (2017) 6049–6059,.
[86]
Zheng J., Ni L.M., An unsupervised learning approach to social circles detection in ego bluetooth proximity network, in: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, in: UbiComp ’13, Association for Computing Machinery, New York, NY, USA, 2013, pp. 721–724,.
[87]
Zhou W.-X., Sornette D., Hill R.A., Dunbar R.I.M., Discrete hierarchical organization of social group sizes, Proc. R. Soc. B 272 (1561) (2005) 439–444,. arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2004.2970. URL https://royalsocietypublishing.org/doi/abs/10.1098/rspb.2004.2970.
[88]
Zhou W.-X., Sornette D., Hill R.A., Dunbar R.I., Discrete hierarchical organization of social group sizes, Proc. R. Soc. B 272 (1561) (2005) 439–444.
[89]
Zhou H., Wang H., Wang N., Li D., Cao Y., Li X., Wu J., Exploiting mobile social networks from temporal perspective: A survey, IEEE Access 7 (2019) 180818–180834,.

Index Terms

  1. On-device modeling of user’s social context and familiar places from smartphone-embedded sensor data
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Journal of Network and Computer Applications
        Journal of Network and Computer Applications  Volume 205, Issue C
        Sep 2022
        328 pages

        Publisher

        Academic Press Ltd.

        United Kingdom

        Publication History

        Published: 01 September 2022

        Author Tags

        1. Context-recognition
        2. Social-context
        3. Ego networks
        4. Feature extraction
        5. Mobile sensing
        6. On-device machine learning

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 17 Jan 2025

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media