[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
review-article

Swarm intelligence for next-generation networks: : Recent advances and applications

Published: 01 October 2021 Publication History

Abstract

In next-generation networks (NGN), a very large number of devices and applications are emerged, along with the heterogeneity of technologies, architectures, mobile data, etc., and optimizing such a network is of utmost importance. Besides convex optimization and game theory, swarm intelligence (SI) has recently appeared as a promising optimization tool for wireless networks. As a new subdivision of artificial intelligence, SI is inspired by the collective behaviors of societies of biological species. In SI, simple agents with limited capabilities can achieve intelligent strategies for high-dimensional and challenging problems, and thus SI has recently found many applications in NGN. However, SI techniques have still not fully investigated in the literature, especially in the contexts of wireless networks. In this work, our primary focus will be the integration of these two domains, i.e., NGN and SI. Firstly, we provide an overview of SI techniques from fundamental concepts to well-known optimizers. Secondly, we review the applications of SI to settle emerging issues in NGN, including spectrum management and resource allocation, wireless caching and edge computing, network security, and several other miscellaneous issues. Finally, we highlight challenges and issues in the literature, and introduce some interesting directions for future research.

References

[1]
Abdulqadder I.H., Zou D., Aziz I.T., Yuan B., Li W., SecSDN-cloud: defeating vulnerable attacks through secure software-defined networks, IEEE Access 6 (2018) 8292–8301.
[2]
Adhikari M., Srirama S.N., Amgoth T., Application offloading strategy for hierarchical fog environment through swarm optimization, IEEE Internet Things J. 7 (5) (2020) 4317–4328.
[3]
Al-Janabi T.A., Al-Raweshidy H.S., A centralized routing protocol with a scheduled mobile sink-based AI for large scale I-IoT, IEEE Sens. J. 18 (24) (2018) 10248–10261.
[4]
Alamaniotis, M., Tsoukalas, L.H., Buckner, M., 2016. Privacy-driven electricity group demand response in smart cities using particle swarm optimization. In: IEEE 28th International Conference on Tools with Artificial Intelligence. ICTAI. San Jose, CA, USA. pp. 946–953.
[5]
Albreem M.A., Juntti M., Shahabuddin S., Massive MIMO detection techniques: A survey, IEEE Commun. Surv. Tutor. 21 (4) (2019) 3109–3132.
[6]
Ali A.S., Mahmoud K.R., Naguib K.M., Optimal caching policy for wireless content delivery in D2D networks, J. Netw. Comput. Appl. 150 (2020).
[7]
de Alwis C., Kalla A., Pham Q.-V., Kumar P., Dev K., Hwang W.-J., Liyanage M., Survey on 6G frontiers: Trends, applications, requirements, technologies and future research, IEEE Open J. Commun. Soc. 2 (2021) 836–886.
[8]
Ammal, R.A., VinodChandra, S., 2018. Bio-inspired algorithms for software defined network controllers. In: International CET Conference on Control, Communication, and Computing. IC4. Thiruvananthapuram, India. pp. 306–310.
[9]
Anandakumar H., Umamaheswari K., A bio-inspired swarm intelligence technique for social aware cognitive radio handovers, Comput. Electr. Eng. 71 (2018) 925–937.
[10]
Asim M., Wang Y., Wang K., Huang P.-Q., A review on computational intelligence techniques in cloud and edge computing, IEEE Trans. Emerg. Top. Comput. Intell. (2020).
[11]
Balamurugan S.A., Kumar S.S., IDsMA: An integrated digital signature and mutual authentication mechanism for securing the cognitive radio networks, Int. J. Commun. Syst. 33 (6) (2020).
[12]
Balusamy B., Sridhar J., Dhamodaran D., Krishna P.V., Bio-inspired algorithms for cloud computing: a review, Int. J. Innovative Comput. Appl. 6 (3–4) (2015) 181–202.
[13]
Bao X., Li H., Zhao G., Chang L., Zhou J., Li Y., Efficient clustering V2V routing based on PSO in VANETs, Measurement 152 (2020).
[14]
Beni G., Wang J., Swarm intelligence in cellular robotic systems, in: Robots and Biological Systems: Towards a New Bionics?, Springer, 1993, pp. 703–712.
[15]
Bitam S., Mellouk A., Zeadally S., Bio-inspired routing algorithms survey for vehicular ad hoc networks, IEEE Commun. Surv. Tutor. 17 (2) (2014) 843–867.
[16]
Bitam S., Zeadally S., Mellouk A., Fog computing job scheduling optimization based on bees swarm, Enterp. Inf. Syst. 12 (4) (2018) 373–397.
[17]
BoussaïD I., Lepagnot J., Siarry P., A survey on optimization metaheuristics, Inform. Sci. 237 (2013) 82–117.
[18]
Budhraja, K.K., Malvankar, A., Bahrami, M., Kundu, C., Kundu, A., Singhal, M., 2017. Risk-based packet routing for privacy and compliance-preserving SDN. In: IEEE International Conference on Cloud Computing. Honolulu, CA, USA. pp. 761–765.
[19]
Bui K.-H.N., Jung J.J., ACO-based dynamic decision making for connected vehicles in IoT system, IEEE Trans. Ind. Inf. 15 (10) (2019) 5648–5655.
[20]
Cekmez, U., Ozsiginan, M., Sahingoz, O.K., 2016. Multi colony ant optimization for UAV path planning with obstacle avoidance. In: International Conference on Unmanned Aircraft Systems. ICUAS. Arlington, VA, USA. pp. 47–52.
[21]
Census C., Wang H., Zhang J., Deng P., Li T., Particle subswarms collaborative clustering, IEEE Trans. Comput. Soc. Syst. 6 (6) (2019) 1165–1179.
[22]
Chang, D., Sun, W., Yang, Y., Wang, T., 2019. An E-ABAC-based SDN access control method. In: International Conference on Information Science and Control Engineering. ICISCE. Shanghai, China. pp. 668–672.
[23]
Chaudhry R., Tapaswi S., Kumar N., Forwarding zone enabled PSO routing with network lifetime maximization in MANET, Appl. Intell. 48 (9) (2018) 3053–3080.
[24]
Chen C., Chen L., Liu L., He S., Yuan X., Lan D., Chen Z., Delay-optimized V2V-based computation offloading in urban vehicular edge computing and networks, IEEE Access 8 (2020) 18863–18873.
[25]
Chen S., Liang Y.-C., Sun S., Kang S., Cheng W., Peng M., Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed, IEEE Wirel. Commun. 27 (2) (2020) 218–228.
[26]
Dabhi D., Pandya K., Enhanced velocity differential evolutionary particle swarm optimization for optimal scheduling of a distributed energy resources with uncertain scenarios, IEEE Access 8 (2020) 27001–27017.
[27]
Dadhich, A., Gupta, A., Yadav, S., 2014. Swarm Intelligence based linear cryptanalysis of four-round Data Encryption Standard algorithm. In: International Conference on Issues and Challenges in Intelligent Computing Techniques. ICICT. Ghaziabad, India. pp. 378–383.
[28]
Dai L., Wang B., Ding Z., Wang Z., Chen S., Hanzo L., A survey of non-orthogonal multiple access for 5g, IEEE Commun. Surv. Tutor. 20 (3) (2018) 2294–2323.
[29]
Dang S., Amin O., Shihada B., Alouini M.-S., What should 6G be?, Nat. Electron. 3 (1) (2020) 20–29.
[30]
Darabseh, A., Namin, A.S., 2015. Effective user authentications using keystroke dynamics based on feature selections. In: IEEE 14th International Conference on Machine Learning and Applications. ICMLA. Miami, FL, USA. pp. 307–312.
[31]
Das S., Biswas A., Dasgupta S., Abraham A., Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications, in: Foundations of Computational Intelligence Volume 3, Springer, 2009, pp. 23–55.
[32]
Datta A., Bhatia V., A near maximum likelihood performance modified firefly algorithm for large MIMO detection, Swarm Evol. Comput. 44 (2019) 828–839.
[33]
Dayal, N., Srivastava, S., 2018. An RBF-PSO based approach for early detection of DDoS attacks in SDN. In: International Conference on Communication Systems & Networks. COMSNETS. Bengaluru, India. pp. 17–24.
[34]
Deng S., Cheng G., Zhao H., Gao H., Yin J., Incentive-driven computation offloading in blockchain-enabled E-commerce, ACM Trans. Internet Technol. 37 (4) (2019) 1–20.
[35]
Diao X., Zheng J., Wu Y., Cai Y., Joint computing resource, power, and channel allocations for D2D-assisted and NOMA-based mobile edge computing, IEEE Access 7 (2019) 9243–9257.
[36]
Dong Y., Xu G., Ding Y., Meng X., Zhao J., A ‘joint-me’task deployment strategy for load balancing in edge computing, IEEE Access 7 (2019) 99658–99669.
[37]
Dorigo, M., Di Caro, G., 1999. Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Vol. 2. Washington, DC, USA. pp. 1470–1477.
[38]
Dressler F., Akan O.B., A survey on bio-inspired networking, Comput. Netw. 54 (6) (2010) 881–900.
[39]
Duan, M., 2018. Short-time prediction of traffic flow based on PSO optimized SVM. In: 2018 International Conference on Intelligent Transportation, Big Data & Smart City. ICITBS. Xiamen, China. pp. 41–45.
[40]
Duan H., Li P., Shi Y., Zhang X., Sun C., Interactive learning environment for bio-inspired optimization algorithms for UAV path planning, IEEE Trans. Educ. 58 (4) (2015) 276–281.
[41]
Durand F.R., Abrão T., Power allocation in multibeam satellites based on particle swarm optimization, AEU-Int. J. Electron. Commun. 78 (2017) 124–133.
[42]
Eappen G., Shankar T., Hybrid PSO-GSA for energy efficient spectrum sensing in cognitive radio network, Phys. Commun. 40 (2020).
[43]
Ebadifard F., Babamir S.M., A PSO-based task scheduling algorithm improved using a load-balancing technique for the cloud computing environment, Concurr. Comput.: Pract. Exper. 30 (12) (2018).
[44]
Ertenlice O., Kalayci C.B., A survey of swarm intelligence for portfolio optimization: Algorithms and applications, Swarm Evol. Comput. 39 (2018) 36–52.
[45]
Fahad, M., Aadil, F., Khan, S., 2017. Optimization of vehicular node clustering process using evolutionary algorithms. In: IEEE SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI. San Francisco, CA. pp. 1–5.
[46]
Faris H., Aljarah I., Al-Betar M.A., Mirjalili S., Grey wolf optimizer: a review of recent variants and applications, Neural Comput. Appl. 30 (2) (2018) 413–435.
[47]
Feng J., Liu Z., Wu C., Ji Y., AVE: Autonomous vehicular edge computing framework with ACO-based scheduling, IEEE Trans. Veh. Technol. 66 (12) (2017) 10660–10675.
[48]
Forooshani A.E., Lotfi-Neyestanak A.A., Michelson D.G., Optimization of antenna placement in distributed MIMO systems for underground mines, IEEE Trans. Wireless Commun. 13 (9) (2014) 4685–4692.
[49]
Gandomi A.H., Yang X.-S., Evolutionary boundary constraint handling scheme, Neural Comput. Appl. 21 (6) (2012) 1449–1462.
[50]
Girmay G.G., Pham Q.-V., Hwang W.-J., Joint channel and power allocation for device-to-device communication on licensed and unlicensed band, IEEE Access 7 (2019) 22196–22205.
[51]
Gohil, B.N., Patel, D.R., 2018. A hybrid GWO-PSO algorithm for load balancing in cloud computing environment. In: Second International Conference on Green Computing and Internet of Things. ICGCIoT. Bangalore, India. pp. 185–191.
[52]
Guan S., Boukerche A., A novel mobility-aware offloading management scheme in sustainable multi-access edge computing, IEEE Trans. Sustain. Comput. (2021).
[53]
Guo F., Zhang H., Ji H., Li X., Leung V.C., An efficient computation offloading management scheme in the densely deployed small cell networks with mobile edge computing, IEEE/ACM Trans. Netw. 26 (6) (2018) 2651–2664.
[54]
Hefnawi M., Large-scale multi-cluster MIMO approach for cognitive radio sensor networks, IEEE Sens. J. 16 (11) (2016) 4418–4424.
[55]
Hou X., Ren Z., Wang J., Cheng W., Ren Y., Chen K.-C., Zhang H., Reliable computation offloading for edge computing-enabled software-defined IoV, IEEE Internet Things J. 7 (8) (2020) 7097–7111.
[56]
Hu R.Q., Hanzo L., et al., Twin-timescale artificial intelligence aided mobility-aware edge caching and computing in vehicular networks, IEEE Trans. Veh. Technol. 68 (4) (2019) 3086–3099.
[57]
Huang C., Cao J., Wang S., Zhang Y., Dynamic resource scheduling optimization with network coding for multi-user services in the Internet of vehicles, IEEE Access 8 (2020) 126988–127003.
[58]
Huang P.-Q., Wang Y., Wang K., Liu Z.-Z., A bilevel optimization approach for joint offloading decision and resource allocation in cooperative mobile edge computing, IEEE Trans. Cybern. 50 (10) (2020) 4228–4241.
[59]
Husain A., Singh S.P., Sharma S., PSO optimized geocast routing in VANET, Wirel. Pers. Commun. 115 (3) (2020) 2269–2288.
[60]
Hussein M.K., Mousa M.H., Efficient task offloading for IoT-based applications in fog computing using ant colony optimization, IEEE Access 8 (2020) 37191–37201.
[61]
Huynh L.N., Pham Q.-V., Pham X.-Q., Nguyen T.D., Hossain M.D., Huh E.-N., Efficient computation offloading in multi-tier multi-access edge computing systems: A particle swarm optimization approach, Appl. Sci. 10 (1) (2020) 203.
[62]
Islam, M.R., Habiba, M., 2012. Dynamic scheduling approach for data-intensive cloud environment. In: International Conference on Cloud Computing Technologies, Applications and Management. ICCCTAM. Dubai, United Arab Emirates. pp. 179–185.
[63]
Islam, M.R., Habiba, M., 2012. Collaborative swarm intelligence based trusted computing. In: International Conference on Informatics, Electronics & Vision. ICIEV. Dhaka, Bangladesh. pp. 1–6.
[64]
Jamali S., Rezaei L., Gudakahriz S.J., An energy-efficient routing protocol for MANETs: a particle swarm optimization approach, J. Appl. Res. Technol. 11 (6) (2013) 803–812.
[65]
Ji B., Wang Y., Song K., Li C., Wen H., Menon V.G., Mumtaz S., A survey of computational intelligence for 6G: Key technologies, applications and trends, IEEE Trans. Ind. Inf. (2021).
[66]
Jiang, K., Ni, H., Sun, P., Han, R., 2019a. An improved binary grey wolf optimizer for dependent task scheduling in edge computing. In: International Conference on Advanced Communication Technology. ICACT. PyeongChang, Korea. pp. 182–186.
[67]
Jiang R., Wang X., Cao S., Zhao J., Li X., Joint compressed sensing and enhanced whale optimization algorithm for pilot allocation in underwater acoustic OFDM systems, IEEE Access 7 (2019) 95779–95796.
[68]
Jiang F., Wang K., Dong L., Pan C., Xu W., Yang K., Deep learning based joint resource scheduling algorithms for hybrid MEC networks, IEEE Internet Things J. 7 (7) (2020) 6252–6265.
[69]
Jiao J., Sun Y., Wu S., Wang Y., Zhang Q., Network utility maximization resource allocation for NOMA in satellite-based Internet of Things, IEEE Internet Things J. 7 (4) (2020) 3230–3242.
[70]
Jin H., Lu H., Jin Y., Zhao C., IVCN: Information-centric network slicing optimization based on NFV in fog-enabled RAN, IEEE Access 7 (2019) 69667–69686.
[71]
Jung J.-Y., Choi H.-H., Lee J.-R., Survey of bio-inspired resource allocation algorithms and MAC protocol design based on a bio-inspired algorithm for mobile ad hoc networks, IEEE Commun. Mag. 56 (1) (2018) 119–127.
[72]
Junnarkar, A.A., Singh, Y., Deshpande, V.S., 2018. SQMAA: Security, QoS and mobility aware ACO based opportunistic routing protocol for MANET. In: International Conference for Convergence in Technology. I2CT. Mangalore, India. pp. 1–6.
[73]
Kalaivani, S., Vikram, A., Gopinath, G., 2019. An effective swarm optimization based intrusion detection classifier system for cloud computing. In: International Conference on Advanced Computing & Communication Systems. ICACCS. Coimbatore, India. pp. 185–188.
[74]
Karaboga D., Basturk B., A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim. 39 (3) (2007) 459–471.
[75]
Karthikeyan A., Srividhya V., Kundu S., Guided joint spectrum sensing and resource allocation using a novel random walk grey wolf optimization for frequency hopping cognitive radio networks, Int. J. Commun. Syst. 32 (13) (2019).
[76]
Keles, C., Alagoz, B.B., Kaygusuz, A., 2017. Multi-source energy mixing for renewable energy microgrids by particle swarm optimization. In: International Artificial Intelligence and Data Processing Symposium. IDAP. Malatya, Turkey. pp. 1–5.
[77]
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks. Perth, WA, Australia. pp. 1942–1948.
[78]
Khan, A.A., Naeem, M., Shah, S.I., 2007. A particle swarm algorithm for symbols detection in wideband spatial multiplexing systems. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. London, England. pp. 63–69.
[79]
Knievel C., Hoeher P.A., On particle swarm optimization for MIMO channel estimation, J. Electr. Comput. Eng. 2012 (2012).
[80]
Krishnanand K., Ghose D., Glowworm swarm optimisation: a new method for optimising multi-modal functions, Int. J. Comput. Intell. Stud. 1 (1) (2009) 93–119.
[81]
Kuribayashi H.P., De Souza M.A., Gomes D.D.A., Silva K.D.C., Da Silva M.S., Costa J.C.W.A., Francês C.R.L., Particle swarm-based cell range expansion for heterogeneous mobile networks, IEEE Access 8 (2020) 37021–37034.
[82]
Lain J., Chen J., Near-MLD MIMO detection based on a modified ant colony optimization, IEEE Commun. Lett. 14 (8) (2010) 722–724.
[83]
Lan R., Zhu Y., Lu H., Liu Z., Luo X., A two-phase learning-based swarm optimizer for large-scale optimization, IEEE Trans. Cybern. (2020).
[84]
Li Z., Chen J., Zhang Z., Socially aware caching in D2D enabled fog radio access networks, IEEE Access 7 (2019) 84293–84303.
[85]
Li J., Zhang X., Wang S., Wang W., Context-oriented multi-RAT user association and resource allocation with triple decision in 5G heterogeneous networks, China Commun. 15 (4) (2018) 72–85.
[86]
Lim W.Y.B., Luong N.C., Hoang D.T., Jiao Y., Liang Y.-C., Yang Q., Niyato D., Miao C., Federated learning in mobile edge networks: A comprehensive survey, IEEE Commun. Surv. Tutor. 22 (3) (2020) 2031–2063.
[87]
Lin J.C.-W., Srivastava G., Zhang Y., Djenouri Y., Aloqaily M., Privacy preserving multi-objective sanitization model in 6G IoT environments, IEEE Internet Things J. 8 (7) (2021) 5340–5349.
[88]
Lin J.C.-W., Wu J.M.-T., Fournier-Viger P., Djenouri Y., Chen C.-H., Zhang Y., A sanitization approach to secure shared data in an IoT environment, IEEE Access 7 (2019) 25359–25368.
[89]
Liu D., Chen B., Yang C., Molisch A.F., Caching at the wireless edge: design aspects, challenges, and future directions, IEEE Commun. Mag. 54 (9) (2016) 22–28.
[90]
Liu, C., Liu, S., Lin, Y., 2020. A multi-objective optimal scheduling strategy for cloud service based on fluctuation cost. In: Proceedings of the ACM Turing Celebration Conference-China. pp. 211–217.
[91]
Liu D., Wang L., Chen Y., Elkashlan M., Wong K., Schober R., Hanzo L., User association in 5G networks: A survey and an outlook, IEEE Commun. Surv. Tutor. 18 (2) (2016) 1018–1044.
[92]
Madan, S., Goswami, P., 2018. A privacy preserving scheme for big data publishing in the cloud using k-anonymization and hybridized optimization algorithm. In: International Conference on Circuits and Systems in Digital Enterprise Technology. Kottayam, India. pp. 1–7.
[93]
Mandloi M., Bhatia V., Congestion control based ant colony optimization algorithm for large MIMO detection, Expert Syst. Appl. 42 (7) (2015) 3662–3669.
[94]
Mandloi M., Bhatia V., A low-complexity hybrid algorithm based on particle swarm and ant colony optimization for large-MIMO detection, Expert Syst. Appl. 50 (2016) 66–74.
[95]
Manshahia M.S., Swarm intelligence-based energy-efficient data delivery in WSAN to virtualise IoT in smart cities, IET Wirel. Sensor Syst. 8 (6) (2018) 256–259.
[96]
Mao Y., You C., Zhang J., Huang K., Letaief K.B., A survey on mobile edge computing: The communication perspective, IEEE Commun. Surv. Tutor. 19 (4) (2017) 2322–2358.
[97]
Mao-Guo G., Li-Cheng J., Dong-Dong Y., Wen-Ping M., Evolutionary multi-objective optimization algorithms, J. Softw. 20 (2) (2009) 271–289.
[98]
Masaracchia A., Da Costa D.B., Duong T.Q., Nguyen M.-N., Nguyen M.T., A PSO-based approach for user-pairing schemes in NOMA systems: Theory and applications, IEEE Access 7 (2019) 90550–90564.
[99]
Mavrovouniotis M., Li C., Yang S., A survey of swarm intelligence for dynamic optimization: Algorithms and applications, Swarm Evol. Comput. 33 (2017) 1–17.
[100]
Mirjalili S., How effective is the grey wolf optimizer in training multi-layer perceptrons, Appl. Intell. 43 (1) (2015) 150–161.
[101]
Mirjalili S., Lewis A., The whale optimization algorithm, Adv. Eng. Softw. 95 (2016) 51–67.
[102]
Mirjalili S., Mirjalili S.M., Lewis A., Grey wolf optimizer, Adv. Eng. Softw. 69 (2014) 46–61.
[103]
Mishra S.K., Puthal D., Rodrigues J.J., Sahoo B., Dutkiewicz E., Sustainable service allocation using a metaheuristic technique in a fog server for industrial applications, IEEE Trans. Ind. Inf. 14 (10) (2018) 4497–4506.
[104]
Moazzami, M., Ghanbari, M., Shahinzadeh, H., Moradi, J., Gharehpetian, G.B., 2018. Application of multi-objective grey wolf algorithm on energy management of microgrids with techno-economic and environmental considerations. In: Conference on Swarm Intelligence and Evolutionary Computation. CSIEC. Bam, Iran. pp. 1–9.
[105]
Molisch A.F., Ratnam V.V., Han S., Li Z., Nguyen S.L.H., Li L., Haneda K., Hybrid beamforming for massive MIMO: A survey, IEEE Commun. Mag. 55 (9) (2017) 134–141.
[106]
Mseddi A., Jaafar W., Elbiaze H., Ajib W., Joint container placement and task provisioning in dynamic fog computing, IEEE Internet Things J. 6 (6) (2019) 10028–10040.
[107]
Mukherjee A., Jain D.K., Goswami P., Xin Q., Yang L., Rodrigues J.J.P.C., Back propagation neural network based cluster head identification in MIMO sensor networks for intelligent transportation systems, IEEE Access 8 (2020) 28524–28532.
[108]
Naseer, A., Jaber, M., 2019. Swarm wisdom for smart mobility - The next generation of autonomous vehicles. In: IEEE SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI. Leicester, UK. pp. 1943–1949.
[109]
Nguyen D.C., Ding M., Pham Q.-V., Pathirana P.N., Le L.B., Seneviratne A., Li J., Niyato D., Poor H.V., Federated learning meets blockchain in edge computing: Opportunities and challenges, IEEE Internet Things J. (2021).
[110]
Nguyen N.T., Lee K., Deep learning-aided tabu search detection for large MIMO systems, IEEE Trans. Wireless Commun. 19 (6) (2020) 4262–4275.
[111]
Nguyen C.T., Van Huynh N., Chu N.H., Saputra Y.M., Hoang D.T., Nguyen D.N., Pham Q.-V., Niyato D., Dutkiewicz E., Hwang W.-J., Transfer learning for future wireless networks: A comprehensive survey, 2021, arXiv preprint arXiv:2102.07572.
[112]
Nguyen B.H., Xue B., Andreae P., Zhang M., A new binary particle swarm optimization approach: momentum and dynamic balance between exploration and exploitation, IEEE Trans. Cybern. 51 (2) (2021) 589–603.
[113]
Nii, E., Washiyama, S., Kitanouma, T., Takizawa, Y., 2019. Dynamic multiple swarming for mobile sensing cluster based on swarm intelligence. In: IEEE 5th World Forum on Internet of Things (WF-IoT). Limerick, Ireland. pp. 961–966.
[114]
Nimmagadda S.M., Optimal spectral and energy efficiency trade-off for massive MIMO technology: analysis on modified lion and grey wolf optimization, Soft Comput. 24 (16) (2020) 1–17.
[115]
Osamy W., El-Sawy A.A., Salim A., CSOCA: Chicken swarm optimization based clustering algorithm for wireless sensor networks, IEEE Access 8 (2020) 60676–60688.
[116]
Peng H., Wen W.-S., Tseng M.-L., Li L.-L., Joint optimization method for task scheduling time and energy consumption in mobile cloud computing environment, Appl. Soft Comput. 80 (2019) 534–545.
[117]
Perabathini, B., Tummuri, K., Agrawal, A., Varma, V.S., 2019. Efficient 3D placement of UAVs with QoS assurance in Ad Hoc wireless networks. In: International Conference on Computer Communication and Networks. ICCCN. Valencia, Spain. pp. 1–6.
[118]
Pham Q.-V., Fang F., Vu H., Piran M.J., Le M., Ding Z., Le L.B., Hwang W.-J., A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art, IEEE Access 8 (2020) 116974–117017.
[119]
Pham T.M., Farrell R., Tran L., Revisiting the MIMO capacity with per-antenna power constraint: Fixed-point iteration and alternating optimization, IEEE Trans. Wireless Commun. 18 (1) (2019) 388–401.
[120]
Pham Q.-V., Huynh-The T., Alazab M., Zhao J., Hwang W.-J., Sum-rate maximization for UAV-assisted visible light communications using NOMA: Swarm intelligence meets machine learning, IEEE Internet Things J. 7 (10) (2020) 10375–10387.
[121]
Pham Q.-V., Le L.B., Chung S.-H., Hwang W.-J., Mobile edge computing with wireless backhaul: Joint task offloading and resource allocation, IEEE Access 7 (2019) 16444–16459.
[122]
Pham Q.-V., Mirjalili S., Kumar N., Alazab M., Hwang W.-J., Whale optimization algorithm with applications to resource allocation in wireless networks, IEEE Trans. Veh. Technol. 69 (4) (2020) 4285–4297.
[123]
Pham Q., Nguyen H.T., Han Z., Hwang W., Coalitional games for computation offloading in NOMA-enabled multi-access edge computing, IEEE Trans. Veh. Technol. 69 (2) (2020) 1982–1993.
[124]
Pham H.-G.T., Pham Q.-V., Pham A.T., Nguyen C.T., Joint task offloading and resource management in NOMA-based MEC systems: A swarm intelligence approach, IEEE Access 8 (2020) 190463–190474.
[125]
Plachy J., Becvar Z., Mach P., Marik R., Vondra M., Joint positioning of flying base stations and association of users: Evolutionary-based approach, IEEE Access 7 (2019) 11454–11463.
[126]
Prasath, M., Perumal, B., 2019. Network attack prediction by random forest: Classification method. In: International Conference on Electronics, Communication and Aerospace Technology. ICECA. Coimbatore, India. pp. 647–654.
[127]
Primeau N., Falcon R., Abielmona R., Petriu E.M., A review of computational intelligence techniques in wireless sensor and actuator networks, IEEE Commun. Surv. Tutor. 20 (4) (2018) 2822–2854.
[128]
Rashid, M., Pajooh, H.H., 2019. A security framework for IoT authentication and authorization based on blockchain technology. In: IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering. TrustCom/BigDataSE. Rotorua, New Zealand. pp. 264–271.
[129]
Rauniyar A., Hagos D.H., Shrestha M., A crowd-based intelligence approach for measurable security, privacy, and dependability in Internet of automated vehicles with vehicular fog, Mob. Inf. Syst. 2018 (2018) 1–14. Article ID 7905960.
[130]
Rehman, N.U., Rahim, H., Ahmad, A., Khan, Z.A., Qasim, U., Javaid, N., 2016. Heuristic algorithm based energy management system in smart grid. In: International Conference on Complex, Intelligent, and Software Intensive Systems. CISIS. Fukuoka, Japan. pp. 396–402.
[131]
Saad, A.A., El Zouka, H.A., Al-Soufi, S.A., 2016. Secure and intelligent road traffic management system based on RFID technology. In: World Symposium on Computer Applications & Research. WSCAR. Cairo, Egypt. pp. 41–46.
[132]
Saleem M., Caro G.A.D., Farooq M., Swarm intelligence based routing protocol for wireless sensor networks: Survey and future directions, Inform. Sci. 181 (20) (2011) 4597–4624.
[133]
Sato, M., Fukuyama, Y., 2017. Total optimization of a smart community by multi-population differential evolutionary particle swarm optimization. In: IEEE Symposium Series on Computational Intelligence. SSCI. Honolulu, HI. pp. 1–8.
[134]
Sato, M., Fukuyama, Y., 2019. Swarm reinforcement learning for operational planning of energy plants for small and mid-sized building energy management systems. In: International Conference on Artificial Intelligence in Information and Communication. ICAIIC. Okinawa, Japan. pp. 343–348.
[135]
Sawalmeh A., Othman N., Shakhatreh H., Efficient deployment of multi-UAVs in massively crowded events, Sensors 18 (11) (2018) 3640.
[136]
Sawalmeh, A., Othman, N.S., Shakhatreh, H., Khreishah, A., 2017. Providing wireless coverage in massively crowded events using UAVs. In: IEEE 13th Malaysia International Conference on Communications. MICC. Johor Bahru. pp. 158–163.
[137]
Sekaran K., Khan M.S., Patan R., Gandomi A.H., Krishna P.V., Kallam S., Improving the response time of M-learning and cloud computing environments using a dominant firefly approach, IEEE Access 7 (2019) 30203–30212.
[138]
Seng, S., Li, X., Ji, H., Zhang, H., 2018. Joint access selection and heterogeneous resources allocation in UDNs with MEC based on non-orthogonal multiple access. In: IEEE International Conference on Communications Workshops. ICC Workshops. Kansas City, MO, USA. pp. 1–6.
[139]
Shakhatreh, H., Khreishah, A., Alsarhan, A., Khalil, I., Sawalmeh, A., Othman, N.S., 2017. Efficient 3D placement of a UAV using particle swarm optimization. In: International Conference on Information and Communication Systems. ICICS. Irbid, Jordan. pp. 258–263.
[140]
Shao S., Zhang Q., Guo S., Qi F., Task allocation mechanism for cable real-time online monitoring business based on edge computing, IEEE Syst. J. 15 (1) (2021) 1344–1355.
[141]
Sharma S., Kaul A., Hybrid fuzzy multi-criteria decision making based multi cluster head dolphin swarm optimized IDS for VANET, Veh. Commun. 12 (2018) 23–38.
[142]
Sharma S., Saini H., Fog assisted task allocation and secure deduplication using 2FBO2 and MoWo in cluster-based industrial IoT (IIoT), Comput. Commun. 152 (2020) 187–199.
[143]
Shreyas, J., Chouhan, D., Akshatha, A.R., Udayaprasad, P.K., Kumar, S.M.D., 2020. Selection of optimal path for the communication of multimedia data in internet of things. In: International Conference on Advanced Computing and Communication Systems. ICACCS. Coimbatore, India. pp. 477–481.
[144]
Souto V.D.P., Souza R.D., Uchôa-Filho B.F., Li A., Li Y., Beamforming optimization for intelligent reflecting surfaces without CSI, IEEE Wirel. Commun. Lett. (2020).
[145]
Stévant, B., Pazat, J.-L., Blanc, A., 2018. Optimizing the performance of a microservice-based application deployed on user-provided devices. In: International Symposium on Parallel and Distributed Computing. Geneva, Switzerland. pp. 133–140.
[146]
Sun Y., Peng M., Zhou Y., Huang Y., Mao S., Application of machine learning in wireless networks: Key techniques and open issues, IEEE Commun. Surv. Tutor. 21 (4) (2019) 3072–3108.
[147]
Sun L., Wan L., Wang X., Learning-based resource allocation strategy for industrial IoT in UAV-enabled MEC systems, IEEE Trans. Ind. Inf. 17 (7) (2021) 5031–5040.
[148]
Sun Y., Wang F., Liu Z., Coalition formation game for resource allocation in D2D uplink underlaying cellular networks, IEEE Commun. Lett. 23 (5) (2019) 888–891.
[149]
Talbi E.-G., A taxonomy of hybrid metaheuristics, J. Heuristics 8 (5) (2002) 541–564.
[150]
Tan Y., Ding K., A survey on GPU-based implementation of swarm intelligence algorithms, IEEE Trans. Cybern. 46 (9) (2016) 2028–2041.
[151]
Tan L.T., Hu R.Q., Hanzo L., Heterogeneous networks relying on full-duplex relays and mobility-aware probabilistic caching, IEEE Trans. Commun. 67 (7) (2019) 5037–5052.
[152]
Tan L.T., Hu R.Q., Hanzo L., Twin-timescale artificial intelligence aided mobility-aware edge caching and computing in vehicular networks, IEEE Trans. Veh. Technol. 68 (4) (2019) 3086–3099.
[153]
Tun Y.K., Tran N.H., Ngo D.T., Pandey S.R., Han Z., Hong C.S., Wireless network slicing: Generalized kelly mechanism-based resource allocation, IEEE J. Sel. Areas Commun. 37 (8) (2019) 1794–1807.
[154]
Vien Q., Le T.A., Yang X., Duong T.Q., Enhancing security of MME handover via fractional programming and firefly algorithm, IEEE Trans. Commun. 67 (9) (2019) 6206–6220.
[155]
Wai R.-J., Prasetia A.S., Adaptive neural network control and optimal path planning of UAV surveillance system with energy consumption prediction, IEEE Access 7 (2019) 126137–126153.
[156]
Wan J., Chen B., Wang S., Xia M., Li D., Liu C., Fog computing for energy-aware load balancing and scheduling in smart factory, IEEE Trans. Ind. Inf. 14 (10) (2018) 4548–4556.
[157]
Wan S., Hu J., Chen C., Jolfaei A., Mumtaz S., Pei Q., Fair-hierarchical scheduling for diversified services in space, air and ground for 6G-dense internet of things, IEEE Trans. Netw. Sci. Eng. (2020).
[158]
Wang Y., Bai P., Liang X., Wang W., Zhang J., Fu Q., Reconnaissance mission conducted by UAV swarms based on distributed PSO path planning algorithms, IEEE Access 7 (2019) 105086–105099.
[159]
Wang J., Cao J., Li B., Lee S., Sherratt R.S., Bio-inspired ant colony optimization based clustering algorithm with mobile sinks for applications in consumer home automation networks, IEEE Trans. Consum. Electron. 61 (4) (2015) 438–444.
[160]
Wang, S., Su, L., Zhang, J., 2017. MPI based PSO algorithm for the optimization problem in micro-grid energy management system. In: Chinese Automation Congress. CAC. Jinan, China. pp. 4479–4483.
[161]
Wang, S., Sun, T., Yang, H., Duan, X., Lu, L., 2020. 6G network: Towards a distributed and autonomous system. In: 2020 2nd 6G Wireless Summit. 6G SUMMIT. pp. 1–5.
[162]
Wei W., Liu S., Li W., Du D., Fractal intelligent privacy protection in online social network using attribute-based encryption schemes, IEEE Trans. Comput. Soc. Syst. 5 (3) (2018) 736–747.
[163]
Wolpert D.H., Macready W.G., No free lunch theorems for optimization, IEEE Trans. Evol. Comput. 1 (1) (1997) 67–82.
[164]
Wu, H., Chen, J., Lyu, F., Wang, L., Shen, X., 2019. Joint caching and trajectory design for cache-enabled UAV in vehicular networks. In: International Conference on Wireless Communications and Signal Processing. WCSP. Xi’an, China. pp. 1–6.
[165]
Xiao Z., Zhu L., Gao Z., Wu D.O., Xia X., User fairness non-orthogonal multiple access (NOMA) for millimeter-wave communications with analog beamforming, IEEE Trans. Wireless Commun. 18 (7) (2019) 3411–3423.
[166]
Xu, H., Fu, Y., Fang, C., Cao, Q., Su, J., Wei, S., 2018b. An improved binary whale optimization algorithm for feature selection of network intrusion detection. In: IEEE 4th International Symposium on Wireless Systems Within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems. IDAACS-SWS. Lviv, Ukraine. pp. 10–15.
[167]
Xu J., Guo C., Zhang H., Joint channel allocation and power control based on PSO for cellular networks with D2D communications, Comput. Netw. 133 (2018) 104–119.
[168]
Yang X.-S., Firefly algorithm, stochastic test functions and design optimisation, Int. J. Bio-Inspir. Comput. 2 (2) (2010) 78–84.
[169]
Yang X.-S., Nature-Inspired Optimization Algorithms, Elsevier, 2014.
[170]
Yang C., Yao Y., Chen Z., Xia B., Analysis on cache-enabled wireless heterogeneous networks, IEEE Trans. Wireless Commun. 15 (1) (2016) 131–145.
[171]
Yeniay Ö., Penalty function methods for constrained optimization with genetic algorithms, Math. Comput. Appl. 10 (1) (2005) 45–56.
[172]
Zhang J., Chen S., Mu X., Hanzo L., Evolutionary-algorithm-assisted joint channel estimation and turbo multiuser detection/decoding for OFDM/SDMA, IEEE Trans. Veh. Technol. 63 (3) (2013) 1204–1222.
[173]
Zhang Y., Liu Y., Zhou J., Sun J., Li K., Slow-movement particle swarm optimization algorithms for scheduling security-critical tasks in resource-limited mobile edge computing, Future Gener. Comput. Syst. 112 (7) (2020) 148–161.
[174]
Zhang Z., Long K., Wang J., Dressler F., On swarm intelligence inspired self-organized networking: Its bionic mechanisms, designing principles and optimization approaches, IEEE Commun. Surv. Tutor. 16 (1) (2014) 513–537.
[175]
Zhang C., Patras P., Haddadi H., Deep learning in mobile and wireless networking: A survey, IEEE Commun. Surv. Tutor. 21 (3) (2019) 2224–2287.
[176]
Zhang Y., Wang S., Ji G., A comprehensive survey on particle swarm optimization algorithm and its applications, Math. Probl. Eng. 2015 (2015) 1–38.
[177]
Zhang H., Wang Y., Ji H., Li X., A sleeping mechanism for cache-enabled small cell networks with energy harvesting function, IEEE Trans. Green Commun. Netw. 4 (2) (2020) 497–505.
[178]
Zhang H., Wang X., Memarmoshrefi P., Hogrefe D., A survey of ant colony optimization based routing protocols for mobile ad hoc networks, IEEE Access 5 (2017) 24139–24161.
[179]
Zhong L., Li M., Cao Y., Jiang T., Stable user association and resource allocation based on stackelberg game in backhaul-constrained HetNets, IEEE Trans. Veh. Technol. 68 (10) (2019) 10239–10251.
[180]
Zhu, S., Gui, L., Chen, J., Zhang, Q., Zhang, N., 2018. Cooperative computation offloading for UAVs: A joint radio and computing resource allocation approach. In: IEEE International Conference on Edge Computing. EDGE. San Francisco, CA, USA. pp. 74–79.
[181]
Zhu C., Tao J., Pastor G., Xiao Y., Ji Y., Zhou Q., Li Y., Ylä-Jääski A., Folo: Latency and quality optimized task allocation in vehicular fog computing, IEEE Internet Things J. 6 (3) (2019) 4150–4161.
[182]
Zhu L., Zhang J., Xiao Z., Cao X., Wu D.O., Xia X., Joint Tx-Rx beamforming and power allocation for 5G millimeter-wave non-orthogonal multiple access networks, IEEE Trans. Commun. 67 (7) (2019) 5114–5125.
[183]
Zhu L., Zhang J., Xiao Z., Cao X., Wu D.O., Xia X., Millimeter-wave NOMA with user grouping, power allocation and hybrid beamforming, IEEE Trans. Wireless Commun. 18 (11) (2019) 5065–5079.

Cited By

View all
  • (2024)GA-BP Optimization Using Hybrid Machine Learning Algorithm for Thermopile Temperature CompensationInternational Journal of Information Technology and Web Engineering10.4018/IJITWE.33749119:1(1-14)Online publication date: 21-Feb-2024
  • (2024)RAGN-LExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.122491240:COnline publication date: 15-Apr-2024
  • (2024)An Intelligent Recurrent Backpropagation Neural System for Energy Optimized Wireless Sensor Based Vehicle CommunicationWireless Personal Communications: An International Journal10.1007/s11277-024-11423-6137:1(477-493)Online publication date: 1-Jul-2024
  • Show More Cited By

Index Terms

  1. Swarm intelligence for next-generation networks: Recent advances and applications
              Index terms have been assigned to the content through auto-classification.

              Recommendations

              Comments

              Please enable JavaScript to view thecomments powered by Disqus.

              Information & Contributors

              Information

              Published In

              cover image Journal of Network and Computer Applications
              Journal of Network and Computer Applications  Volume 191, Issue C
              Oct 2021
              175 pages

              Publisher

              Academic Press Ltd.

              United Kingdom

              Publication History

              Published: 01 October 2021

              Author Tags

              1. 5G and beyond
              2. 6G
              3. Artificial intelligence (AI)
              4. Computational intelligence
              5. Swarm intelligence (SI)
              6. Next-generation wireless networks

              Qualifiers

              • Review-article

              Contributors

              Other Metrics

              Bibliometrics & Citations

              Bibliometrics

              Article Metrics

              • Downloads (Last 12 months)0
              • Downloads (Last 6 weeks)0
              Reflects downloads up to 20 Jan 2025

              Other Metrics

              Citations

              Cited By

              View all
              • (2024)GA-BP Optimization Using Hybrid Machine Learning Algorithm for Thermopile Temperature CompensationInternational Journal of Information Technology and Web Engineering10.4018/IJITWE.33749119:1(1-14)Online publication date: 21-Feb-2024
              • (2024)RAGN-LExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.122491240:COnline publication date: 15-Apr-2024
              • (2024)An Intelligent Recurrent Backpropagation Neural System for Energy Optimized Wireless Sensor Based Vehicle CommunicationWireless Personal Communications: An International Journal10.1007/s11277-024-11423-6137:1(477-493)Online publication date: 1-Jul-2024
              • (2023)A Survey of Swarm Intelligence Based Clustering Models for Anomaly Detection in Network TrafficProceedings of the 5th International Conference on Information Management & Machine Intelligence10.1145/3647444.3647913(1-10)Online publication date: 23-Nov-2023
              • (2022)Towards scalable resource management for supercomputersProceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis10.5555/3571885.3571916(1-15)Online publication date: 13-Nov-2022
              • (2022)Collaborative Beamforming for UAV Networks Exploiting Swarm IntelligenceIEEE Wireless Communications10.1109/MWC.001.210067729:4(10-17)Online publication date: 1-Aug-2022

              View Options

              View options

              Media

              Figures

              Other

              Tables

              Share

              Share

              Share this Publication link

              Share on social media