[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Expectile depth: : Theory and computation for bivariate datasets

Published: 01 July 2021 Publication History

Abstract

Expectiles are the solution to an asymmetric least squares minimization problem for univariate data. They resemble the quantiles, and just like them, expectiles are indexed by a level α in the unit interval. In the present paper, we introduce and discuss the main properties of the (multivariate) expectile regions, a nested family of sets, whose instance with level 0 < α ≤ 1 ∕ 2 is built up by all points whose univariate projections lie between the expectiles of levels α and 1 − α of the projected dataset. Such level is interpreted as the degree of centrality of a point with respect to a multivariate distribution and therefore serves as a depth function. We propose here algorithms for determining all the extreme points of the bivariate expectile regions as well as for computing the depth of a point in the plane. We also study the convergence of the sample expectile regions to the population ones and the uniform consistency of the sample expectile depth. Finally, we present some real data examples for which the Bivariate Expectile Plot (BExPlot) is introduced.

References

[1]
Bellini F., Klar B., Müller A., Expectiles, omega ratios and stochastic ordering, Methodol. Comput. Appl. Probab. 20 (2018) 855–873.
[2]
Bellini F., Klar B., Müller A., Rosazza Gianin E., Generalized quantiles as risk measures, Insurance Math. Econom. 54 (2014) 41–48.
[3]
Breckling J., Chambers R., M-quantiles, Biometrika 75 (1988) 761–771.
[4]
Breckling J., Kokic P., Lübke O., A note on multivariate M-quantiles, Statist. Probab. Lett. 55 (2001) 39–44.
[5]
Cascos I., The expected convex hull trimmed regions of a sample, Comput. Statist. 22 (2007) 557–569.
[6]
Cascos I., Data depth: multivariate statistics and geometry, in: Kendall W., Molchanov I. (Eds.), New Perspectives in Stochastic Geometry, Oxford University Press, 2010, pp. 398–423.
[7]
Cascos I., López-Díaz M., Control charts based on parameter depths, Appl. Math. Model. 53 (2018) 487–509.
[8]
Cascos I., Molchanov I., Multivariate risks and depth-trimmed regions, Financ. Stoch. 8 (2007) 531–552.
[9]
Choquet G., Theory of capacities, Ann. Inst. Fourier 5 (1954) 131–295.
[10]
Cramér H., Wold H., Some theorems on distribution functions, J. London Math. Soc. s1- 11 (1936) 290–294.
[11]
Daouia A., Paindaveine D., From halfspace M-depth to multiple output expectile regression, 2019, arXiv e-prints, arXiv:1905.12718.
[12]
Dyckerhoff R., Computing zonoid trimmed regions of bivariate data sets, in: Bethlehem J., Heijden P. (Eds.), Proceedings in Computational Statistics, COMPSTAT 2000, Physica–Verlag, Heidelberg, 2000, pp. 295–300.
[13]
Dyckerhoff R., Data depths satisfying the projection property, All. Stat. Arch. 88 (2004) 163–190.
[14]
Dyckerhoff R., Convergence of depths and depth-trimmed regions, 2017, arXiv e-prints, arXiv:1611.08721v2.
[15]
Dyckerhoff R., Mosler K., Weighted-mean trimming of multivariate data, J. Multivariate Anal. 102 (2011) 405–421.
[16]
Dyckerhoff R., Mosler K., Weighted-mean regions of a probability distribution, Statist. Probab. Lett. 82 (2012) 318–325.
[17]
Eberl A., Klar B., Expectile based measures of skewness, 2019, arXiv e-prints, arXiv:1908.08243.
[18]
P. Eilers, Expectile contours and data depth, in: A.W. Bowman (Ed.), Proceedings of the 25th International Workshop on Statistical Modelling, 2010, pp. 167–172.
[19]
Gelman A., Meng X.-L., A note on bivariate distributions that are conditionally normal, Amer. Stat. 45 (1991) 125–126.
[20]
Giorgi E., McNeil A.J., On the computation of multivariate scenario sets for the skew-t and generalized hyperbolic families, Comput. Statist. Data Anal. 100 (2016) 205–220.
[21]
Gneiting T., Making and evaluating point forecasts, J. Amer. Statist. Assoc. 106 (2011) 746–762.
[22]
Herrmann K., Hofert M., Mailhot M., Multivariate geometric expectiles, Scand. Actuar. J. 7 (2018) 629–659.
[23]
Holzmann H., Klar B., Expectile asymptotics, Electron. J. Stat. 10 (2016) 2355–2371.
[24]
Jones M.C., Expectiles and M-quantiles are quantiles, Statist. Probab. Lett. 20 (1994) 149–153.
[25]
Koshevoy G., Mosler K., Zonoid trimming for multivariate distributions, Ann. Statist. 25 (1997) 1998–2017.
[26]
Koshevoy G., Mosler K., Lift zonoids, random convex hulls and the variability of random vectors, Bernoulli 4 (1998) 377–399.
[27]
Krätschmer V., Zähle H., Statistical inference for expectile-based risk measures, Scand. J. Stat. 44 (2017) 425–454.
[28]
Liu R.Y., On a notion of data depth based on random simplices, Ann. Statist. 18 (1990) 405–414.
[29]
Liu R.Y., Control charts for multivariate processes, J. Amer. Statist. Assoc. 90 (1995) 1380–1387.
[30]
Liu R.Y., Parelius J.M., Singh K., Multivariate analysis by data depth: descriptive statistics, graphics and inference (with discussion and a rejoinder by Liu and Singh), Ann. Stat. 27 (1999) 783–858.
[31]
Maume-Deschamps V., Rullière D., Said K., Multivariate extensions of expectile risk measures, Depend. Model. 5 (2016) 20–44.
[32]
Molchanov I., Theory of Random Sets, second ed., Springer, London, 2017.
[33]
Mosler K., Multivariate Dispersion, Central Regions, and Depth, in: The lift zonoid approach, Lecture Notes in Statistics, vol. 165, Springer, Berlin, 2002.
[34]
Müller A., Orderings of risks: A comparative study via stop-loss transforms, Insurance Math. Econom. 17 (1996) 215–222.
[35]
Müller A., Stoyan D., Comparison Methods for Stochastic Models and Risks, Wiley, 2002.
[36]
Newey W., Powell J., Asymmetric least squares estimation and testing, Econometrika 55 (1987) 819–847.
[37]
Pokotylo O., Mozharovskyi P., Dyckerhoff R., Nagy S., ddalpha: Depth-based classification and calculation of data depth 1.3.9, 2019, https://cran.r-project.org/web/packages/ddalpha/index.html.
[38]
Rousseeuw P.J., Ruts I., Algorithm AS 307: Bivariate location depth, J. Roy. Statist. Soc. C 45 (1996) 516–526.
[39]
Rousseeuw P.J., Ruts I., The depth function of a population distribution, Metrika 49 (1999) 213–244.
[40]
Rousseeuw P.J., Ruts I., Tukey J.W., The bagplot: A bivariate boxplot, Amer. Stat. 53 (1999) 382–387.
[41]
Ruts I., Rousseeuw P.J., Computing depth contours of bivariate point clouds, Comput. Statist. Data Anal. 23 (1996) 153–168.
[42]
Schnabel S., Eilers P., Optimal expectile smoothing, Comput. Statist. Data Anal. 53 (2009) 4168–4177.
[43]
Schneider R., Convex Bodies: The Brunn–Minkowski Theory, in: Encyclopedia of Mathematics and Its Applications, vol. 44, Cambridge University Press, Cambrigde, 1993.
[44]
Shaked M., Shantikumar G., Stochastic Orders, in: Springer Series in Statistics, 2007.
[45]
Sobotka F., Schnabel S., Waltrup L.S., Eilers P., Kauermann G., expectreg: Expectile and quantile regression, 2014, Github read-only mirror of the CRAN R package repository https://github.com/cran/expectreg.git.
[46]
J.W. Tukey, Mathematics and the picturing of data, in: R.D. James (Ed.), Proceedings of the International Congress of Mathematitians (Vancouver, B.C. 1974), in: Canad. Math. Congress, vol. 2, Que, Montreal, 1975, pp. 523–531.
[47]
Villasenor-Alva J.A., González-Estrada E., A generalization of Shapiro–Wilk’s test for multivariate normality, Comm. Statist. Theory Methods 38 (2009) 1870–1883.
[48]
Wolf H.P., aplpack: Another plot package 1.3.2, 2018, https://cran.r-project.org/web/packages/aplpack/index.html.
[49]
Xu X., Sun J., Nie S., Li H., Kong Y., Liang M., Hou J., Huang X., Li D., Ma T., Peng J., et al., Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China, Nat. Med. 26 (2020) 1193–1195.
[50]
Ziegel J., Coherence and elicitability, Math. Finance 26 (2016) 901–918.
[51]
Zuo Y., Serfling R., General notions of statistical depth function, Ann. Statist. 28 (2000) 461–482.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Multivariate Analysis
Journal of Multivariate Analysis  Volume 184, Issue C
Jul 2021
331 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 July 2021

Author Tags

  1. 62H05
  2. 60D05
  3. 65C60

Author Tags

  1. Algorithm
  2. Bagplot
  3. Data depth
  4. Depth region
  5. Expectile

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media