[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

An efficient visual exploration approach of geospatial vector big data on the web map

Published: 16 May 2024 Publication History

Abstract

The visual exploration of geospatial vector data has become an increasingly important part of the management and analysis of geospatial vector big data (GVBD). With the rapid growth of data scale, it is difficult to realize efficient visual exploration of GVBD by current visualization technologies even if parallel distributed computing technology is adopted. To fill the gap, this paper proposes a visual exploration approach of GVBD on the web map. In this approach, we propose the display-driven computing model and combine the traditional data-driven computing method to design an adaptive real-time visualization algorithm. At the same time, we design a pixel-quad-R tree spatial index structure. Finally, we realize the multilevel real-time interactive visual exploration of GVBD in a single machine by constructing the index offline to support the online computation for visualization, and all the visualization results can be calculated in real-time without the external cache occupation. The experimental results show that the approach outperforms current mainstream visualization methods and obtains the visualization results at any zoom level within 0.5 s, which can be well applied to multilevel real-time interactive visual exploration of the billion-scale GVBD.

Highlights

A Pixel-Quad-R-tree structure is designed to support the efficient visual exploration of geospatial vector big data (GVBD), the index can adapt to the computational requirements in the subsequent tile drawing process and provide efficient data organization support for GVBD visual exploration.
The PQR-tree-based Adaptive Tile Drawing (PATD) algorithm is proposed, PATD adaptively adopts the optimal pixel generation strategy to determine and achieve efficient visualization performance on a single machine. Meanwhile, the visualization results at each zoom level can be generated in real-time without pre-computation for caching.
An open-source visual exploration tool of GVBD is designed, which can browse data in real-time. Users can either zoom out to inspect the overall distribution or zoom in to view the individual details. Moreover, the tool also supports real-time interactive customization of data styles.

References

[1]
Breunig M., Bradley P.E., Jahn M., Kuper P., Mazroob N., Rösch N., Al-Doori M., Stefanakis E., Jadidi M., Geospatial data management research: Progress and future directions, ISPRS Int. J. Geo-Inf. 9 (2) (2020) 95.
[2]
Coetzee S., Ivánová I., Mitasova H., Brovelli M.A., Open geospatial software and data: A review of the current state and a perspective into the future, ISPRS Int. J. Geo-Inf. 9 (2) (2020) 90.
[3]
Ge M., Dohnal V., Quality management in big data, in: Informatics, Vol. 5, No. 2, MDPI, 2018, p. 19.
[4]
Hu F., Xu M., Yang J., Liang Y., Cui K., Little M.M., Lynnes C.S., Duffy D.Q., Yang C., Evaluating the open source data containers for handling big geospatial raster data, ISPRS Int. J. Geo-Inf. 7 (4) (2018) 144.
[5]
Zhu J., Wright G., Wang J., Wang X., A critical review of the integration of geographic information system and building information modelling at the data level, ISPRS Int. J. Geo-Inf. 7 (2) (2018) 66.
[6]
OpenStreetMap J., OpenStreetMap, 2022, https://www.openstreetmap.org/.
[7]
Ghosh S., Eldawy A., AID*: A spatial index for visual exploration of geo-spatial data, IEEE Trans. Knowl. Data Eng. 34 (8) (2022) 3569–3582,.
[8]
Yao X., Li G., Big spatial vector data management: a review, Big Earth Data 2 (1) (2018) 108–129.
[9]
Liu Z., Heer J., The effects of interactive latency on exploratory visual analysis, IEEE Trans. Vis. Comput. Graph. 20 (12) (2014) 2122–2131.
[10]
Wang L., Christensen R., Li F., Yi K., Spatial online sampling and aggregation, Proc. VLDB Endowm. 9 (3) (2015) 84–95.
[11]
Park Y., Cafarella M., Mozafari B., Visualization-aware sampling for very large databases, in: 2016 Ieee 32nd International Conference on Data Engineering, Icde, IEEE, 2016, pp. 755–766.
[12]
Liu Z., Jiang B., Heer J., imMens: Real-time visual querying of big data, in: Computer Graphics Forum, Vol. 32, No. 3pt4, Wiley Online Library, 2013, pp. 421–430.
[13]
Thorvaldsdóttir H., Robinson J.T., Mesirov J.P., Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration, Brief. Bioinform. 14 (2) (2013) 178–192.
[14]
Eldawy A., Mokbel M.F., Alharthi S., Alzaidy A., Tarek K., Ghani S., Shahed: A mapreduce-based system for querying and visualizing spatio-temporal satellite data, in: 2015 IEEE 31st International Conference on Data Engineering, IEEE, 2015, pp. 1585–1596.
[15]
Eldawy A., Mokbel M.F., Jonathan C., HadoopViz: A MapReduce framework for extensible visualization of big spatial data, in: 2016 IEEE 32nd International Conference on Data Engineering, ICDE, IEEE, 2016, pp. 601–612.
[16]
Yu J., Sarwat M., GeoSparkViz: a cluster computing system for visualizing massive-scale geospatial data, VLDB J. 30 (2) (2021) 237–258.
[17]
Ghosh S., Eldawy A., Jais S., Aid: An adaptive image data index for interactive multilevel visualization, in: 2019 IEEE 35th International Conference on Data Engineering, ICDE, IEEE, 2019, pp. 1594–1597.
[18]
Guo N., Xiong W., Wu Q., Jing N., An efficient tile-pyramids building method for fast visualization of massive geospatial raster datasets, Adv. Electr. Comput. Eng. 16 (4) (2016) 3–9.
[21]
SuperMap N., SuperMap GIS, 2022, https://www.supermap.com/.
[22]
MapBox N., mapbox, 2022, https://www.mapbox.com/.
[23]
Pavlenko A., Mapnik, 2021, https://mapnik.org.
[24]
QGIS.ORG A., QGIS, 2022, https://www.qgis.org/.
[25]
B. K., MapServer, 2022, https://mapserver.org/.
[26]
POSTGIS K., PostGIS, 2022, https://postgis.net/.
[27]
M. El-Hindi, Z. Zhao, C. Binnig, T. Kraska, Vistrees: fast indexes for interactive data exploration, in: Proceedings of the Workshop on Human-in-the-Loop Data Analytics, 2016, pp. 1–6.
[28]
Yu J., Sarwat M., Turbocharging geospatial visualization dashboards via a materialized sampling cube approach, in: 2020 IEEE 36th International Conference on Data Engineering, ICDE, IEEE, 2020, pp. 1165–1176.
[29]
T. Guo, K. Feng, G. Cong, Z. Bao, Efficient selection of geospatial data on maps for interactive and visualized exploration, in: Proceedings of the 2018 International Conference on Management of Data, 2018, pp. 567–582.
[30]
Su S., An M., Perry V., Jia J., Kim T., Chen T.-Y., Li C., Visually analyzing A billion tweets: an application for collaborative visual analytics on large high-resolution display, in: 2018 IEEE International Conference on Big Data, Big Data, IEEE, 2018, pp. 3597–3606.
[31]
OmniSci S., Omnisci, 2022, https://www.omnisci.com/.
[32]
Zhou C., Chen Z., Pian Y., Xiao N., Li M., A parallel scheme for large-scale polygon rasterization on CUDA-enabled GPUs, Trans. GIS 21 (3) (2017) 608–631.
[33]
Netek R., Masopust J., Pavlicek F., Pechanec V., Performance testing on vector vs. raster map tiles—comparative study on load metrics, ISPRS Int. J. Geo-Inf. 9 (2) (2020) 101.
[34]
Wang G., Chen J., A vector data model for efficiently rendering large vector maps on global 3D terrain surfaces, ISPRS Int. J. Geo-Inf. 11 (4) (2022) 234.
[35]
J. Yu, Z. Zhang, M. Sarwat, Geosparkviz: a scalable geospatial data visualization framework in the apache spark ecosystem, in: Proceedings of the 30th International Conference on Scientific and Statistical Database Management, 2018, pp. 1–12.
[36]
M. Ma, A. Yang, Y. Wu, L. Chen, J. Li, N. Jing, Disa: A display-driven spatial analysis framework for large-scale vector data, in: Proceedings of the 28th International Conference on Advances in Geographic Information Systems, 2020, pp. 147–150.
[37]
Ma M., Wu Y., Ouyang X., Chen L., Li J., Jing N., HiVision: Rapid visualization of large-scale spatial vector data, Comput. Geosci. 147 (2021).
[38]
Liu Z., Chen L., Yang A., Ma M., Cao J., HiIndex: An efficient spatial index for rapid visualization of large-scale geographic vector data, ISPRS Int. J. Geo-Inf. 10 (10) (2021) 647.
[39]
Chen L., Liu Z., Ma M., Interactive visualization of geographic vector big data based on viewport generalization model, Appl. Sci. 12 (15) (2022) 7710.
[40]
Zhou C., Lu H., Xiang Y., Wu J., Wang F., GeohashTile: Vector geographic data display method based on geohash, ISPRS Int. J. Geo-Inf. 9 (7) (2020) 418.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Information Systems
Information Systems  Volume 121, Issue C
Mar 2024
217 pages

Publisher

Elsevier Science Ltd.

United Kingdom

Publication History

Published: 16 May 2024

Author Tags

  1. Geospatial vector data
  2. Big data
  3. Visual exploration
  4. Multilevel
  5. Real-time

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Dec 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media