[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Succinct data structure for path graphs

Published: 12 April 2024 Publication History

Abstract

We consider the problem of designing a succinct data structure for path graphs, that generalizes interval graphs, on n vertices while efficiently supporting degree, adjacency, and neighbourhood queries. We provide the following two solutions for this problem:
1.
an n log ⁡ n + o ( n log ⁡ n )-bit succinct data structure that supports adjacency query in O ( log ⁡ n ) time, neighbourhood query in O ( d log ⁡ n ) time and finally, degree query in min ⁡ { O ( log 2 ⁡ n ), O ( d log ⁡ n ) } time where d is the degree of the queried vertex.
2.
an O ( n log 2 ⁡ n )-bit space-efficient data structure that supports adjacency, neighborhood, and degree queries optimally.
Central to our data structures is the usage of the heavy path decomposition, followed by careful bookkeeping using an orthogonal range search data structure using wavelet trees among others, which may be of independent interest for designing succinct data structures for other graph classes.

References

[1]
G. Balakrishnan, N.S. Narayanaswamy, S. Chakraborty, K. Sadakane, Succinct data structure for path graphs, in: Data Compression Conference, DCC 2022, IEEE, 2022, pp. 262–271.
[2]
D.D. Sleator, R.E. Tarjan, A data structure for dynamic trees, in: Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, 1981, pp. 114–122.
[3]
V. Mäkinen, G. Navarro, Rank and select revisited and extended, Theor. Comput. Sci. 387 (3) (2007) 332–347.
[4]
M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, North-Holland Publishing Co., NLD, 2004.
[5]
H. Acan, S. Chakraborty, S. Jo, S.R. Satti, Succinct data structures for families of interval graphs, in: WADS, vol. 11646, 2019.
[6]
J.I. Munro, V. Raman, Succinct representation of balanced parentheses and static trees, SIAM J. Comput. 31 (3) (2001) 762–776.
[7]
L.C. Aleardi, O. Devillers, G. Schaeffer, Succinct representations of planar maps, Theor. Comput. Sci. 408 (2–3) (2008) 174–187.
[8]
A. Farzan, S. Kamali, Compact navigation and distance oracles for graphs with small treewidth, Algorithmica 69 (1) (2014) 92–116.
[9]
T. Yanagita, S. Chakraborty, K. Sadakane, S.R. Satti, Space-efficient data structure for posets with applications, in: 18th SWAT, in: LIPIcs, vol. 227, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 33:1–33:16.
[10]
S. Chakraborty, S. Jo, K. Sadakane, S.R. Satti, Succinct data structures for series-parallel, block-cactus and 3-leaf power graphs, in: COCOA, in: Lecture Notes in Computer Science, vol. 13135, Springer, 2021, pp. 416–430.
[11]
H. Acan, S. Chakraborty, S. Jo, K. Nakashima, K. Sadakane, S.R. Satti, Succinct navigational oracles for families of intersection graphs on a circle, Theor. Comput. Sci. 928 (2022) 151–166.
[12]
S. Chakraborty, S. Jo, K. Sadakane, S.R. Satti, Succinct data structures for small clique-width graphs, in: DCC, IEEE, 2021, pp. 133–142.
[13]
J. Barbay, L.C. Aleardi, M. He, J.I. Munro, Succinct representation of labeled graphs, Algorithmica 62 (1–2) (2012) 224–257.
[14]
S. Kamali, Compact representation of graphs with bounded bandwidth or treedepth, Inf. Comput. 285 (Part) (2022).
[15]
S. Chakraborty, R. Grossi, K. Sadakane, S.R. Satti, Succinct representation for (non)deterministic finite automata, J. Comput. Syst. Sci. 131 (2023) 1–12.
[16]
A. Farzan, J.I. Munro, Succinct encoding of arbitrary graphs, Theor. Comput. Sci. 513 (2013) 38–52.
[17]
M. He, J.I. Munro, Y. Nekrich, S. Wild, K. Wu, Distance oracles for interval graphs via breadth-first rank/select in succinct trees, in: 31st ISAAC, in: LIPIcs, vol. 181, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 25:1–25:18.
[18]
S. Chakraborty, S. Jo, Compact representation of interval graphs and circular-arc graphs of bounded degree and chromatic number, Theor. Comput. Sci. 941 (2023) 156–166.
[19]
J.I. Munro, K. Wu, Succinct data structures for chordal graphs, in: ISAAC, in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 123, 2018, pp. 67:1–67:12.
[20]
P. Allen, V. Lozin, M. Rao, Clique-width and the speed of hereditary properties, Electron. J. Comb. 16 (1) (2009) R35.
[21]
D.G. Corneil, U. Rotics, On the relationship between clique-width and treewidth, in: Andreas Brandstädt, Van Bang Le (Eds.), Graph-Theoretic Concepts in Computer Science, Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 78–90.
[22]
J. Böttcher, K.P. Pruessmann, A. Taraz, A. Würfl, Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs, Eur. J. Comb. 31 (5) (2010) 1217–1227.
[23]
F. Gavril, A Recognition Algorithm for the Intersection Graphs of Paths in Trees, 1978.
[24]
C.L. Monma, V.K.-W. Wei, Intersection graphs of paths in a tree, J. Comb. Theory, Ser. B 41 (2) (1986) 141–181.
[25]
R. Diestel, Graph Theory, 5th edition, Springer Publishing Company, Incorporated, 2017.
[26]
T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd edition, The MIT Press, 2009.
[27]
P.L. Renz, Intersection representations of graphs by arcs, Pac. J. Math. 34 (2) (1970).
[28]
R. Grossi, G. Ottaviano, Fast compressed tries through path decompositions, ACM J. Exp. Algorithmics 19 (Jan. 2015).
[29]
P. Ferragina, R. Grossi, A. Gupta, R. Shah, J.S. Vitter, On searching compressed string collections cache-obliviously, in: PODS '08, ACM, 2008, pp. 181–190.
[30]
G. Navarro, K. Sadakane, Fully functional static and dynamic succinct trees, ACM Trans. Algorithms 10 (3) (May 2014).
[31]
R. Raman, V. Raman, S.R. Satti, Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets, ACM Trans. Algorithms 3 (4) (2007) 43.
[32]
G. Navarro, Compact Data Structures - a Practical Approach, Cambridge University Press, 2016.
[33]
A. Golynski, J.I. Munro, S.S. Rao, Rank/select operations on large alphabets: a tool for text indexing, in: SODA, USA, 2006, SODA '06, Society for Industrial and Applied Mathematics, 2006, pp. 368–373.
[34]
S. Chakraborty, K. Sadakane, Indexing graph search trees and applications, in: 44th MFCS, 2019, pp. 67:1–67:14.
[35]
N. Banerjee, S. Chakraborty, V. Raman, S.R. Satti, Space efficient linear time algorithms for BFS, DFS and applications, Theory Comput. Syst. 62 (8) (2018) 1736–1762.
[36]
S. Chakraborty, S.R. Satti, Space-efficient algorithms for maximum cardinality search, its applications, and variants of BFS, J. Comb. Optim. 37 (2) (2019) 465–481.
[37]
T. Hagerup, Fast breadth-first search in still less space, in: WG, in: Lecture Notes in Computer Science, vol. 11789, Springer, 2019, pp. 93–105.
[38]
T. Hagerup, Space-efficient DFS and applications to connectivity problems: simpler, leaner, faster, Algorithmica 82 (4) (2020) 1033–1056.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Information and Computation
Information and Computation  Volume 296, Issue C
Jan 2024
244 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 12 April 2024

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media