[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

One-variable fragments of intermediate logics over linear frames

Published: 01 September 2022 Publication History

Abstract

A correspondence is established between one-variable fragments of (first-order) intermediate logics defined over a fixed countable linear frame and Gödel modal logics defined over many-valued equivalence relations with values in a closed subset of the real unit interval. It is also shown that each of these logics can be interpreted in the one-variable fragment of the corresponding constant domain intermediate logic, which is equivalent to a Gödel modal logic defined over (crisp) equivalence relations. Although the latter modal logics in general lack the finite model property with respect to their frame semantics, an alternative semantics is defined that has this property and used to establish co-NP-completeness results for the one-variable fragments of the corresponding intermediate logics both with and without constant domains.

References

[1]
X. Caicedo, G. Metcalfe, R. Rodríguez, O. Tuyt, The one-variable fragment of Corsi logic, in: Proceedings of WoLLIC 2019, in: LNCS, vol. 11541, Springer, 2019, pp. 70–83.
[2]
H. Ono, N.-Y. Suzuki, Relations between intuitionistic modal logics and intermediate predicate logics, Rep. Math. Log. 22 (1988) 65–87.
[3]
N.-Y. Suzuki, Kripke bundles for intermediate predicate logics and Kripke frames for intuitionistic modal logics, Stud. Log. 49 (3) (1990) 289–306.
[4]
G. Bezhanishvili, Varieties of monadic Heyting algebras - part I, Stud. Log. 61 (3) (1998) 367–402.
[5]
P. Hájek, On fuzzy modal logics S5(C), Fuzzy Sets Syst. 161 (18) (2010) 2389–2396.
[6]
F. Wolter, M. Zakharyaschev, Intuitionistic modal logics as fragments of classical bimodal logics, in: E. Orlowska (Ed.), Logic at Work, Springer, 1999, pp. 168–186.
[7]
D. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev, Many-Dimensional Modal Logics, Elsevier, 2003.
[8]
R. Kontchakov, A. Kurucz, M. Zakharyaschev, Undecidability of first-order intuitionistic and modal logics with two variables, Bull. Symb. Log. 11 (3) (2005) 428–438.
[9]
M. Rybakov, D. Shkatov, Undecidability of first-order modal and intuitionistic logics with two variables and one monadic predicate letter, Stud. Log. 107 (2019) 695–717.
[10]
M. Takano, Ordered sets R and Q as bases of Kripke models, Stud. Log. 46 (1987) 137–148.
[11]
M. Dummett, A propositional calculus with denumerable matrix, J. Symb. Log. 24 (1959) 97–106.
[12]
X. Caicedo, R. Rodríguez, Bi-modal Gödel logic over [0, 1]-valued Kripke frames, J. Log. Comput. 25 (1) (2015) 37–55.
[13]
A. Beckmann, N. Preining, Linear Kripke frames and Gödel logics, J. Symb. Log. 72 (2007) 26–44.
[14]
X. Caicedo, R. Rodríguez, Standard Gödel modal logics, Stud. Log. 94 (2) (2010) 189–214.
[15]
G. Metcalfe, N. Olivetti, Towards a proof theory of Gödel modal logics, Log. Methods Comput. Sci. 7 (2) (2011) 1–27.
[16]
X. Caicedo, G. Metcalfe, R. Rodríguez, J. Rogger, Decidability in order-based modal logics, J. Comput. Syst. Sci. 88 (2017) 53–74.
[17]
L. Blandi, L. Godo, R. Rodríguez, A connection between similarity logic programming and Gödel modal logic, in: Proc. EUSFLAT 2005, Universidad Polytecnica de Catalunya, 2005, pp. 775–7080.
[18]
S. Schockaert, M.D. Cock, E. Kerre, Spatial reasoning in a fuzzy region connection calculus, Artif. Intell. 173 (2) (2009) 258–298.
[19]
P. Dellunde, L. Godo, E. Marchioni, Extending possibilistic logic over Gödel logic, Int. J. Approx. Reason. 52 (1) (2011) 63–75.
[20]
P. Hájek, Making fuzzy description logic more general, Fuzzy Sets Syst. 154 (1) (2005) 1–15.
[21]
F. Bobillo, M. Delgado, J. Gómez-Romero, U. Straccia, Fuzzy description logics under Gödel semantics, Int. J. Approx. Reason. 50 (3) (2009) 494–514.
[22]
S. Borgwardt, F. Distel, R. Peñaloza, The limits of decidability in fuzzy description logics with general concept inclusions, Artif. Intell. 218 (2015) 23–55.
[23]
G. Corsi, Completeness theorem for Dummett's LC quantified, Stud. Log. 51 (1992) 317–335.
[24]
S. Kripke, Semantical analysis of intuitionistic logic I, in: J. Crossley, M. Dummett (Eds.), Formal Systems and Recursive Functions, in: Studies in Logic and the Foundations of Mathematics, vol. 40, Elsevier, 1965, pp. 92–130.
[25]
S. Görnemann, A logic stronger than intuitionism, J. Symb. Log. 36 (2) (1971) 249–261.
[26]
R. Bull, MIPC as formalisation of an intuitionist concept of modality, J. Symb. Log. 31 (1966) 609–616.
[27]
H. Ono, On some intuitionistic modal logics, Publ. RIMS, Kyoto Univ. 13 (1977) 687–722.
[28]
P. Hájek, Metamathematics of Fuzzy Logic, Kluwer, Dordrecht, 1998.
[29]
A. Beckmann, M. Goldstern, N. Preining, Continuous Fraissé conjecture, Order 25 (2008) 281–298.
[30]
A. Horn, Logic with truth values in a linearly ordered Heyting algebra, J. Symb. Log. 34 (3) (1969) 395–409.
[31]
Y. Moschovakis, Descriptive Set Theory, North-Holland, 1980.
[32]
N. Preining, Characterization of Gödel Logics, PhD Thesis TU Wien, 2003.
[33]
R. Iemhoff, A note on linear Kripke models, J. Log. Comput. 15 (4) (2005) 489–506.
[34]
F. Bou, F. Esteva, L. Godo, R. Rodríguez, Possibilistic Semantics for a Modal KD45 Extension of Gödel Fuzzy Logic, Proceedings of IPMU 2016, vol. 21, Springer, 2016, pp. 123–135.
[35]
M. Baaz, N. Preining, R. Zach, First-order Gödel logics, Ann. Pure Appl. Log. 147 (2007) 23–47.
[36]
M. Baaz, A. Ciabattoni, N. Preining, First-order satisfiability in Gödel logics: an NP-complete fragment, Theor. Comput. Sci. 412 (47) (2011) 6612–6623.
[37]
P. Minari, M. Takano, H. Ono, Intermediate predicate logics determined by ordinals, J. Symb. Log. 55 (3) (1990) 1099–1124.
[38]
A. Beckmann, N. Preining, Separating intermediate predicate logics of well-founded and dually well-founded structures by monadic sentences, J. Log. Comput. 25 (3) (2014) 527–547.

Index Terms

  1. One-variable fragments of intermediate logics over linear frames
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Information and Computation
    Information and Computation  Volume 287, Issue C
    Sep 2022
    220 pages

    Publisher

    Academic Press, Inc.

    United States

    Publication History

    Published: 01 September 2022

    Author Tags

    1. Intermediate logics
    2. One-variable fragments
    3. Gödel modal logics

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 11 Dec 2024

    Other Metrics

    Citations

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media