[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A two-stage accelerated search strategy for large-scale multi-objective evolutionary algorithm

Published: 21 November 2024 Publication History

Abstract

Since large-scale multi-objective problems (LSMOPs) have huge decision variables, the traditional evolutionary algorithms are facing difficulties of low exploitation efficiency and high exploration costs in solving LSMOPs. Therefore, this paper proposes an evolutionary strategy based on two-stage accelerated search optimizers (ATAES). Specifically, a convergence optimizer is devised in the first stage, while a three-layer lightweight convolutional neural network model is built, and the population is homogenized into two subsets, the diversity subset, and the convergence subset, which serve as input nodes and the expected output nodes of the neural network, respectively. Then, by constantly backpropagating the gradient, a satisfactory individual will be produced. Once exploitation stagnation is discovered in the first phase, the second phase will be run, where a diversity optimizer using a differential optimization algorithm with opposite learning is suggested to increase the exploration range of candidate solutions and thereby increase the population's diversity. Finally, to validate the algorithm's performance, on multi-objective LSMOP and DTLZ benchmark suits with decision variable quantities of 100, 300, 500, and 1000, the ATAES demonstrated its superiority with other advanced multi-objective evolutionary algorithms.

References

[1]
Z. Zhang, S. Liu, Y. Zhang, W. Chen, Rs-darts: a convolutional neural architecture search for remote sensing image scene classification, Remote Sens. 14 (1) (2022) [Online]. Available: https://www.mdpi.com/2072-4292/14/1/141.
[2]
F. Zhang, Y. Mei, S. Nguyen, K.C. Tan, M. Zhang, Task relatedness-based multitask genetic programming for dynamic flexible job shop scheduling, IEEE Trans. Evol. Comput. 27 (6) (DEC 2023) 1705–1719.
[3]
C. Wang, X. Liu, H. Li, X. Di, L. Cong, S. Zhang, H. Qi, Smart contract-based integrity audit method for iot, Inf. Sci. 647 (NOV 2023).
[4]
X.-F. Liu, Z.-H. Zhan, J. Zhang, Resource-aware distributed differential evolution for training expensive neural-network-based controller in power electronic circuit, IEEE Trans. Neural Netw. Learn. Syst. 33 (11) (NOV 2022) 6286–6296.
[5]
L.-L. Li, B.-X. Ji, M.K. Lim, M.-L. Tseng, Active distribution network operational optimization problem: a multi-objective tuna swarm optimization model, Appl. Soft Comput. 150 (2024) [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1568494623011055.
[6]
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: Nsga-ii, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.
[7]
K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints, IEEE Trans. Evol. Comput. 18 (4) (2014) 577–601.
[8]
Q. Zhang, H. Li, Moea/d: a multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput. 11 (6) (2007) 712–731.
[9]
H. Li, Q. Zhang, Multiobjective optimization problems with complicated Pareto sets, moea/d and nsga-ii, IEEE Trans. Evol. Comput. 13 (2) (2009) 284–302.
[10]
S. Jiang, J. Zhang, Y.-S. Ong, A.N. Zhang, P.S. Tan, A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm, IEEE Trans. Cybern. 45 (10) (2015) 2202–2213.
[11]
J. Bader, E. Zitzler, Hype: an algorithm for fast hypervolume-based many-objective optimization, Evol. Comput. 19 (1) (2011) 45–76.
[12]
Q. Luo, Q. Fan, Q. Deng, X. Guo, G. Gong, X. Liu, Solving bi-objective integrated scheduling problem of production, inventory and distribution using a modified nsga-ii, Expert Syst. Appl. 225 (2023) [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0957417423005766.
[13]
F. Simsek, B. Pfitzmann, H. Raetz, J. Otholt, H. Yang, C. Meinel, Doclangid: improving few-shot training to identify the language of historical documents, in: Proceedings of the 7th International Workshop on Historical Document Imaging and Processing, Ser. HIP '23, Association for Computing Machinery, New York, NY, USA, 2023, pp. 103–108. [Online]. Available: https://doi.org/10.1145/3604951.3605512.
[14]
Y. Liu, Y. Sun, B. Xue, M. Zhang, G.G. Yen, K.C. Tan, A survey on evolutionary neural architecture search, IEEE Trans. Neural Netw. Learn. Syst. 34 (2) (2023) 550–570.
[15]
L. Zhang, K. Li, Y. Qi, Recognition of crop leaf diseases based on multi-feature fusion and evolutionary algorithm optimisation, Int. J. Bio-Inspir. Comput. 21 (3) (jun 2023) 163–173,. [Online].
[16]
Y. Tian, L. Si, X. Zhang, R. Cheng, C. He, K.C. Tan, Y. Jin, Evolutionary large-scale multi-objective optimization: a survey, ACM Comput. Surv. 54 (8) (oct 2021),. [Online].
[17]
F. Qiu, H. Hu, J. Ren, L. Wang, Q. Qiu, An adaptive sparse large-scale multiobjective evolutionary algorithm, in: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, Ser. GECCO '23 Companion, Association for Computing Machinery, New York, NY, USA, 2023, pp. 403–406. [Online]. Available: https://doi.org/10.1145/3583133.3590532.
[18]
L.M. Antonio, C.A.C. Coello, Use of cooperative coevolution for solving large scale multiobjective optimization problems, in: 2013 IEEE Congress on Evolutionary Computation, 2013, pp. 2758–2765.
[19]
L. Miguel Antonio, C.A. Coello Coello, Decomposition-based approach for solving large scale multi-objective problems, in: J. Handl, E. Hart, P.R. Lewis, M. López-Ibáñez, G. Ochoa, B. Paechter (Eds.), Parallel Problem Solving from Nature – PPSN XIV, Springer International Publishing, Cham, 2016, pp. 525–534.
[20]
S. Liu, Q. Lin, Y. Tian, K.C. Tan, A variable importance-based differential evolution for large-scale multiobjective optimization, IEEE Trans. Cybern. 52 (12) (2022) 13048–13062.
[21]
G.T. Reddy, M.P.K. Reddy, K. Lakshmanna, R. Kaluri, D.S. Rajput, G. Srivastava, T. Baker, Analysis of dimensionality reduction techniques on big data, IEEE Access 8 (2020) 54776–54788.
[22]
X. Ma, F. Liu, Y. Qi, X. Wang, L. Li, L. Jiao, M. Yin, M. Gong, A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables, IEEE Trans. Evol. Comput. 20 (2) (2016) 275–298.
[23]
X. Zhang, Y. Tian, R. Cheng, Y. Jin, A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization, IEEE Trans. Evol. Comput. 22 (1) (2018) 97–112.
[24]
R. Liu, R. Ren, J. Liu, J. Liu, A clustering and dimensionality reduction based evolutionary algorithm for large-scale multi-objective problems, Appl. Soft Comput. 89 (2020) [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1568494620300600.
[25]
S. Liu, Q. Lin, L. Feng, K.-C. Wong, K.C. Tan, Evolutionary multitasking for large-scale multiobjective optimization, IEEE Trans. Evol. Comput. 27 (4) (2023) 863–877.
[26]
Y. Tian, X. Zheng, X. Zhang, Y. Jin, Efficient large-scale multiobjective optimization based on a competitive swarm optimizer, IEEE Trans. Cybern. 50 (8) (2020) 3696–3708.
[27]
C. He, R. Cheng, D. Yazdani, Adaptive offspring generation for evolutionary large-scale multiobjective optimization, IEEE Trans. Syst. Man Cybern. Syst. 52 (2) (2022) 786–798.
[28]
Y. Zhang, J. Liu, Y. Xu, Z.Y. Dong, An athlete–referee dual learning system for real-time optimization with large-scale complex constraints, Knowl.-Based Syst. 271 (2023) [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0950705123003167.
[29]
Z. Wang, H. Hong, K. Ye, G.-E. Zhang, M. Jiang, K.C. Tan, Manifold interpolation for large-scale multiobjective optimization via generative adversarial networks, IEEE Trans. Neural Netw. Learn. Syst. 34 (8) (2023) 4631–4645.
[30]
N. Mouhrim, S. Smetana, A. Bhatia, A. Mathys, A. Green, D. Peguero, A. Tonda, Towards multi-objective optimization of sustainable insect production chains, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, Ser. GECCO '22, Association for Computing Machinery, New York, NY, USA, 2022, pp. 352–355. [Online]. Available: https://doi.org/10.1145/3520304.3528898.
[31]
Y. Tian, C. Lu, X. Zhang, K.C. Tan, Y. Jin, Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks, IEEE Trans. Cybern. 51 (6) (2021) 3115–3128.
[32]
X. Yang, J. Zou, S. Yang, J. Zheng, Y. Liu, A fuzzy decision variables framework for large-scale multiobjective optimization, IEEE Trans. Evol. Comput. 27 (3) (2023) 445–459.
[33]
C. He, S. Huang, R. Cheng, K.C. Tan, Y. Jin, Evolutionary multiobjective optimization driven by generative adversarial networks (gans), IEEE Trans. Cybern. 51 (6) (2021) 3129–3142.
[34]
S. Mittal, D.K. Saxena, K. Deb, E.D. Goodman, A learning-based innovized progress operator for faster convergence in evolutionary multi-objective optimization, ACM Trans. Evol. Learn. Optim. 2 (1) (nov 2021),. [Online].
[35]
Z. Luo, M. Tan, Z. Huang, G. Li, Chaos gray wolf global optimization algorithm based on opposition-based learning, in: Proceedings of the 2023 7th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, Ser. ISMSI '23, Association for Computing Machinery, New York, NY, USA, 2023, pp. 50–57. [Online]. Available: https://doi.org/10.1145/3596947.3596960.
[36]
H. Tizhoosh, Opposition-based learning: a new scheme for machine intelligence, in: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), vol. 1, 2005, pp. 695–701.
[37]
Z. Yang, X. Yao, J. He, Making a Difference to Differential Evolution, Springer, Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 397–414. [Online]. Available: https://doi.org/10.1007/978-3-540-72960-0_19.
[38]
G. Yang, X. Yuan, L. Jin, An adaptive differential evolution algorithm with hierarchical mutation strategy and opposition learning, in: Proceedings of the 5th International Conference on Information Technologies and Electrical Engineering, Ser. ICITEE '22, Association for Computing Machinery, New York, NY, USA, 2023, pp. 24–34. [Online]. Available: https://doi.org/10.1145/3582935.3582940.
[39]
S. Mahdavi, S. Rahnamayan, K. Deb, Opposition based learning: a literature review, Swarm Evol. Comput. 39 (2018) 1–23. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2210650216304333.
[40]
J. Wu, Marg attitude estimation using gradient-descent linear Kalman filter, IEEE Trans. Autom. Sci. Eng. 17 (4) (2020) 1777–1790.
[41]
R. Cheng, Y. Jin, M. Olhofer, B. Sendhoff, A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput. 20 (5) (2016) 773–791.
[42]
A. Dixit, A. Mani, Quantum entanglement inspired differential evolution algorithm, in: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, Ser. GECCO '23 Companion, Association for Computing Machinery, New York, NY, USA, 2023, pp. 2203–2210. [Online]. Available: https://doi.org/10.1145/3583133.3596377.
[43]
X. Tian, B. Ma, C. Meng, Research on cmopso particle swarm optimization algorithm for green manufacturing energy system in ecological park, in: 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2021, pp. 2155–2159.
[44]
R. Cheng, Y. Jin, M. Olhofer, B. Sendhoff, Test problems for large-scale multiobjective and many-objective optimization, IEEE Trans. Cybern. 47 (12) (2017) 4108–4121.
[45]
K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable Test Problems for Evolutionary Multiobjective Optimization, 2005, pp. 105–145. [Online]. Available: https://doi.org/10.1007/1-84628-137-7_6.
[46]
L. While, L. Bradstreet, L. Barone, A fast way of calculating exact hypervolumes, IEEE Trans. Evol. Comput. 16 (1) (2012) 86–95.
[47]
Y. Sun, G.G. Yen, Z. Yi, Igd indicator-based evolutionary algorithm for many-objective optimization problems, IEEE Trans. Evol. Comput. 23 (2) (2019) 173–187.
[48]
Y. Tian, R. Cheng, X. Zhang, Y. Jin, Platemo: a Matlab platform for evolutionary multi-objective optimization [educational forum], IEEE Comput. Intell. Mag. 12 (4) (2017) 73–87.
[49]
B. Abdollahzadeh, F.S. Gharehchopogh, S. Mirjalili, African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems, Comput. Ind. Eng. 158 (2021) [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360835221003120.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Information Sciences: an International Journal
Information Sciences: an International Journal  Volume 686, Issue C
Jan 2025
1134 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 21 November 2024

Author Tags

  1. Evolutionary algorithm
  2. Large-scale multi-objective optimization algorithm
  3. Opposite learning
  4. Artificial neural network
  5. Accelerated search

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media