[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Self regulating particle swarm optimization algorithm

Published: 10 February 2015 Publication History

Abstract

In this paper, we propose a new particle swarm optimization algorithm incorporating the best human learning strategies for finding the optimum solution, referred to as a Self Regulating Particle Swarm Optimization (SRPSO) algorithm. Studies in human cognitive psychology have indicated that the best planners regulate their strategies with respect to the current state and their perception of the best experiences from others. Using these ideas, we propose two learning strategies for the PSO algorithm. The first one uses a self-regulating inertia weight and the second uses the self-perception on the global search direction. The self-regulating inertia weight is employed by the best particle for better exploration and the self-perception of the global search direction is employed by the rest of the particles for intelligent exploitation of the solution space. SRPSO algorithm has been evaluated using the 25 benchmark functions from CEC2005 and a real-world problem for a radar system design. The results have been compared with six state-of-the-art PSO variants like Bare Bones PSO (BBPSO), Comprehensive Learning PSO (CLPSO), etc. The two proposed learning strategies help SRPSO to achieve faster convergence and provide better solutions in most of the problems. Further, a statistical analysis on performance evaluation of the different algorithms on CEC2005 problems indicates that SRPSO is better than other algorithms with a 95% confidence level.

References

[1]
A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization, Part II: Hybridization, combinatorial, multicriteria and constrained optimization and indicative applications, Nat. Comput., 7 (2008).
[2]
B. Alatas, E. Akin, A.B. Ozer, Chaos embedded particle swarm optimization algorithms, Chaos Solit. Fract., 40 (2009) 1715-1734.
[3]
P. Bajpai, S.N. Singh, Fuzzy adaptive particle swarm optimization for bidding strategy in uniform price spot market, IEEE Trans. Power Syst., 22 (2007) 2152-2160.
[4]
G.Q. Bao, K.F. Mao, Particle swarm optimization algorithm with asymmetric time-varying acceleration coefficients, in: Proc. of IEEE International Conference on robotics and biomimetics, 2009, pp. 2134-2139.
[5]
Z. Beheshti, S.M. Hj Shamsuddin, CAPSO: centripetal accelerated particle swarm optimization, Inform. Sci., 258 (2014) 54-79.
[6]
F.V.D. Bergh, Engelbrecht, P. Andries, A cooperative approach to particle swarm optimization, IEEE Trans. Evol. Comput., 8 (2004) 225-239.
[7]
J.G. Borkowski, M. Carr, E. Rellinger, M. Pressley, Self-Regulated Cognition: Interdependence of Metacognition, Dimensions of Thinking and Cognitive Instruction, 2013, p. 53.
[8]
L. Cagnina, M. Errecalde, D. Ingaramo, P. Rosso, An efficient particle swarm optimization approach to cluster short texts, Inform. Sci., 265 (2014) 36-49.
[9]
S. Chatterjee, D. Goswami, S. Mukherjee, S. Das, Behavioral analysis of the leader particle during stagnation in a particle swarm optimization algorithm, Inform. Sci., 279 (2014) 18-36.
[10]
W.N. Chen, J. Zhang, Y. Lin, N. Chen, Z.H. Zhan, H.S.H. Chung, Y. Li, Y.H. Shi, Particle swarm optimization with an aging leader and challengers, IEEE Trans. Evol. Comput., 17 (2013) 241-258.
[11]
X. Chu, M. Hu, T. Wu, J.D. Weir, Q. Lu, AHPS2: an optimizer using adaptive heterogeneous particle swarms, Inform. Sci., 280 (2014) 26-52.
[12]
M. Clerc, J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput., 6 (2002) 58-73.
[13]
Y. del Valle, G.K. Venayagamoorthy, S. Mohagheghi, J.C. Hernandez, R.G. Harley, Particle swarm optimization: basic concepts, variants and applications in power systems, IEEE Trans. Evol. Comput., 12 (2008) 171-195.
[14]
J. Demšar, Statistical comparisons of classifiers over multiple data sets, Machine Learn. Res., 7 (2006) 1-30.
[15]
J. Ding, J. Liu, K.R. Chowdhury, W. Zhang, Q. Hu, J. Lei, A particle swarm optimization using local stochastic search and enhancing diversity for continuous optimization, Neurocomputing, 137 (2014) 261-267.
[16]
M. Dukic, Z. Dobrosavljevic, A method of spread-spectrum radar polyphase code design, IEEE J. Select. Areas Commun., 8 (1990) 748-749.
[17]
R.C. Eberhart, Y. Shi, Particle swarm optimization: developments, applications and resources, in: Proc. of Cong. on Evolutionary Computation, 2001, pp. 81-86.
[18]
Engelbrecht, P. Andries, Computational Intelligence: An Introduction, John Wiley and Sons, 2007.
[19]
M.G. Epitropakis, V.P. Plagianakos, M.N. Vrahatis, Evolving cognitive and social experience in particle swarm optimization through differential evolution: a hybrid approach, Inform. Sci., 216 (2012) 50-92.
[20]
M. Eslami, H. Shareef, M. Khajehzadeh, A. Mohamed, A survey of the state of the art in particle swarm optimization, Res. J. Appl. Sci. Eng. Technol., 4 (2012) 1181-1197.
[21]
L. Guo, X. Chen, A novel particle swarm optimization based on the self-adaptation strategy of acceleration coefficients, in: Proc. of the IEEE Int. Conf. on Computational Intelligence and Security, 2009, pp. 277-281.
[22]
H. Hakli, H. Ug¿uz, A novel particle swarm optimization algorithm with levy flight, Appl. Soft Comput. (2014).
[23]
W. Han, P. Yang, H. Ren, J. Sun, Comparison study of several kinds of inertia weight for PSO, in: Proc. of the IEEE Int. Conf. on Progress in Informatics and Computing, 2010, pp. 280-284.
[24]
W.A. Hassan, M.B. Fayek, S.I. Shaheen, PSOSA: an optimised particle swarm technique for solving the urban planning problem, in: Proc. of the IEEE Int. Conf. of Computer Engineering and Systems, 2006, pp. 401-405.
[25]
N. Higashi, H. Iba, Particle swarm optimization with Gaussian mutation, in: Proc. of IEEE SIS, 2003, pp. 72-79.
[26]
A.K. Husseinzadeh, M.K. Husseinzadeh, S. Karimiyan, A particle swarm optimizer for grouping problems, Inform. Sci., 252 (2013) 81-95.
[27]
S. Janson, M. Middendorf, A hierarchical particle swarm optimizer and its adaptive variant, IEEE Trans. Syst. Man Cybernet. Part B: Cybernet., 35 (2005) 1272-1282.
[28]
W. Jianxin, H.X. Xin, Z. Weiguo, W. Rui, Exponential inertia weight particle swarm algorithm for dynamic optimization of electromechanical coupling system, in: Proc. of the IEEE Int. Conf. on Intelligent Computing and Intelligent Systems, 2009, pp. 479-483.
[29]
J. Kennedy, Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance, in: Proc. of Cong. on Evolutionary Computation, 1999.
[30]
J. Kennedy, Bare bones particle swarms, in: Proc. of IEEE SIS, 2003, pp. 80-87.
[31]
J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proc. of IEEE Int. Conf. on Neural Networks, 1995, pp. 1942-1948.
[32]
J. Kennedy, R. Mendes, Population structure and particle swarm performance, in: Proc. of Cong. on Evolutionary Computation, 2002, pp. 1671-1676.
[33]
M.S. Leu, M.F. Yeh, Grey particle swarm optimization, Appl. Soft Comput., 12 (2012) 2985-2996.
[34]
C. Li, S. Yang, T.T. Nguyen, A self-learning particle swarm optimizer for global optimization problems, IEEE Trans. Syst. Man Cybernet. Part B: Cybernet., 42 (2012) 627-646.
[35]
L. Li, B. Xue, B. Niu, Y. Chai, J. Wu, The novel nonlinear strategy of inertia weight in particle swarm optimization, in: Proc. of the IEEE Int. Conf. on Bio-inspired computation, 2009, pp. 1-5.
[36]
J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evol. Comput., 10 (2006) 281-295.
[37]
J.J. Liang, P.N. Suganthan, Dynamic multi-swarm particle swarm optimizer, in: Proc. of IEEE SIS, 2005, pp. 210-224.
[38]
W.H. Lim, N.A.M. Isa, An adaptive two-layer particle swarm optimization with elitist learning strategy, Inform. Sci., 273 (2014) 49-72.
[39]
W.H. Lim, N.A.M. Isa, Bidirectional teaching and peer-learning particle swarm optimization, Inform. Sci., 280 (2014) 111-134.
[40]
W.H. Lim, N.A.M. Isa, Teaching and peer-learning particle swarm optimization, Appl. Soft Comput., 18 (2014) 39-58.
[41]
G.Y Lin, D.Y. Hong, A new particle swarm optimization algorithm with random inertia weight and evolution strategy, in: Proc. of the IEEE Int. Conf. on CIS, 2007, pp. 199-203.
[42]
C. Liu, C. Ouyang, P. Zhu, W. Tang, An adaptive fuzzy weight PSO algorithm, in: Proc. of the IEEE Conf. on Genetic and Evolutionary Computation, 2010, pp. 8-10.
[43]
M. Lovbjerg, T.K. Rasmussen, T. Krink, Hybrid particle swarm optimizer with breeding and subpopulations, in: Proc. of the IEEE Int. Conf. on Genetic and Evolutionary Computation, 2001, pp. 469-476.
[44]
M.J. Mahmoodabadi, Z.M. Salahshoor, A. Bagheri, HEPSO: high exploration particle swarm optimization, Inform. Sci., 273 (2014) 101-111.
[45]
R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler, maybe better, IEEE Trans. Evol. Comput., 8 (2004) 204-210.
[46]
G. Napoles, I. Grau, R. Bello, Particle swarm optimization with random sampling in variable neighbourhoods for solving global minimization problems, in: Swarm Intelligence, Springer, Berlin, Heidelberg, 2012, pp. 352-353.
[47]
T.O. Nelson, L. Narens, Metamemory: a theoretical framework and new findings, Psychol. Learn. Motivation, 26 (1990) 125-141.
[48]
F. Neri, E. Mininno, G. Iacca, Compact particle swarm optimization, Inform. Sci., 239 (2013) 96-121.
[49]
E. Ozcan, C. Mohan, Particle swarm optimization: surfing the waves, in: Proc. of Cong. on Evolutionary Computation, 1999, pp. 1939-1944.
[50]
M. Pant, T. Radha, V.P. Singh, Particle swarm optimization using Gaussian inertia weight, in: Proc. of the IEEE Int. Conf. on Computational Intelligence and Multimedia, 2007, pp. 97-102.
[51]
D. Parrott, X. Li, Locating and tracking multiple dynamic optima by a particle swarm model using speciation, IEEE Trans. Evol. Comput., 10 (2006) 440-458.
[52]
K.E. Parsopoulos, M.N. Vrahatis, Empirical study of particle swarm optimizer with an increasing inertia weight, in: Proc. of Cong. on Evolutionary Computation, 2004, pp. 868-873.
[53]
K.E. Parsopoulos, M.N. Vrahatis, On the computation of all global minimizers through particle swarm optimization, IEEE Trans. Evol. Comput., 8 (2004) 211-224.
[54]
K.E. Parsopoulos, M.N. Vrahatis, UPSO: a unified particle swarm optimization scheme, in: Lecture Series on Computer and Computational Sciences: Proc. of Int. Conf. of Computational Methods in Sciences and Engineering, 2004, pp. 868-873.
[55]
T. Peram, K. Veeramachaneni, C.K. Mohan, Fitness-distance-ratio based particle swarm optimization, in: Proc. of IEEE SIS, 2003, pp. 174-181.
[56]
A.M. Perez-Bellido, S. Salcedo-Sanz, E.G. Ortiz-Garcia, A. Portilla-Figueras, A hybrid evolutionary programming algorithm for spread spectrum radar polyphase codes design, in: Proc. of the 9th Annual Conf. on Genetic and Evolutionary Computation, 2007, pp. 682-688.
[57]
R. Poli, Analysis of the publications on the applications of particle swarm optimization, Artif. Evol. Appl., 28 (2008) 1-10.
[58]
B.Y. Qu, P.N. Suganthan, S. Das, Distance-based locally informed particle swarm model for multimodal optimization, IEEE Trans. Evol. Comput., 17 (2013) 387-402.
[59]
A. Ratnaweera, S.K. Halgamuge, H.C. Watson, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Trans. Evol. Comput., 8 (2004) 240-255.
[60]
Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proc. of WCCI, 1998, pp. 69-73.
[61]
Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in: Proc. of Cong. on Evolutionary Computation, 1999, pp. 1945-1950.
[62]
Y. Shi, H. Liu, L. Gao, G. Zhang, Cellular particle swarm optimization, Inform. Sci., 181 (2013) 4460-4493.
[63]
Y. Song, Z. Chen, Z. Yuan, New chaotic PSO-based neural network predictive control for nonlinear process, IEEE Trans. Neural Netw., 18 (2007) 595-601.
[64]
P.N. Suganthan, N. Hansen, J.J. Liang, Y.P. Chen, K. Deb, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Technical Report: Nanyang Technological University AND KanGAL Report (2005005), 2005.
[65]
C. Sun, J. Zeng, J. Pan, S. Xue, Y. Jin, A new fitness estimation strategy for particle swarm optimization, Inform. Sci., 221 (2013) 355-370.
[66]
J. Sun, B.W. Xu, W. Fang, Diversity-guided quantum-behaved particle swarm optimization algorithm, in: Proc. of Int. Conf. on Simulated Evolution and Learning, 2006, pp. 497-504.
[67]
S. Suresh, K. Dong, J.H. Kim, A sequential learning algorithm for self-adaptive resource allocation network classifier, Neurocomputing, 73 (2010) 3012-3019.
[68]
S. Suresh, R. Savitha, N. Sundararajan, A sequential learning algorithm for complex-valued self-regulating resource allocation network-CSRAN, IEEE Trans. Neural Netw., 22 (2011) 1061-1072.
[69]
S. Suresh, P.B. Sujit, A.K. Rao, Particle swarm optimization approach for multi-objective composite box-beam design, Compos. Struct., 81 (2007) 598-605.
[70]
M.R. Tanweer, S. Suresh, Human cognition inspired particle swarm optimization algorithm, in: IEEE 9th Int. Conf. on Intelligent Sensors, Sensor Networks and Information Processing, 2014, pp. 1-6.
[71]
R. Thangaraj, M. Pant, A. Abraham, P. Bouvry, Particle swarm optimization: hybridization perspectives and experimental illustrations, Appl. Math. Comput., 217 (2011) 5208-5226.
[72]
H. Wang, H. Sun, C. Li, S. Rahnamayan, J.S. Pan, Diversity enhanced particle swarm optimization with neighborhood search, Inform. Sci., 223 (2013) 119-135.
[73]
H. Wang, Z. Wu, S. Rahnamayan, C. Li, S. Zeng, D. Jiangand, Particle swarm optimization with simple and efficient neighbourhood search strategies, Int. J. Innovat. Comput. Appl., 3 (2011) 97-104.
[74]
L. Wang, B. Yang, Y. Chen, Improving particle swarm optimization using multi-layer searching strategy, Inform. Sci., 274 (2014) 70-94.
[75]
X. Zhao, Z. Liu, X. Yang, A multi-swarm cooperative multistage perturbation guiding particle swarm optimizer, Appl. Soft Comput., 22 (2014) 77-93.
[76]
D. Yazdani, B. Nasiri, S.M. Alireza, M.R. Meybodi, A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization, Appl. Soft Comput., 13 (2013) 77-93.
[77]
X. Yu, X. Zhang, Enhanced comprehensive learning particle swarm optimization, Appl. Math. Comput., 242 (2014) 265-276.
[78]
C. Zeng, A particle swarm optimization algorithm with rich social cognition, in: IEEE 5th International Conference on Natural Computation, 2009, pp. 186-189.
[79]
Z.H. Zhan, J. Zhang, Y. Li, H.S.H. Chung, Adaptive particle swarm optimization, IEEE Trans. Syst. Man Cybernet. Part B: Cybernet., 39 (2009) 1362-1381.
[80]
W.J. Zhang, X.F. Xie, DEPSO: hybrid particle swarm with differential evolution operator, in: IEEE Int. Conf. Systems, Man, and Cybernetics, 2003, pp. 3816-3821.
[81]
Y.L. Zheng, L.H. Ma, L.Y. Zhang, J.X. Qian, A unified particle swarm optimization scheme, in: Proc. of the IEEE Int. Conf. of Computational Methods in Sciences and Engineering, 2003, pp. 221-226.
[82]
Z. Zhi-Hui, Z. Jun, L. Yun, S. Yu-Hui, Orthogonal learning particle swarm optimization, IEEE Trans. Evol. Comput., 15 (2011) 832-847.
[83]
T. Ziyu, Z. Dingxue, A modified particle swarm optimization with adaptive acceleration coefficients, in: Proc. of the IEEE Int. Conf. on Information Processing, 2009, pp. 330-332.
[84]
F. Zou, L. Wang, X. Hei, D. Chen, D. Yang, Teaching-learning-based optimization with dynamic group strategy for global optimization, Inform. Sci., 273 (2014) 112-131.

Cited By

View all
  • (2024)Optimization of Biped Robot Walking Based on the Improved Particle Swarm AlgorithmInternational Journal of Intelligent Systems10.1155/2024/66890712024Online publication date: 1-Jan-2024
  • (2024)Auto-configuring Exploration-Exploitation Tradeoff in Evolutionary Computation via Deep Reinforcement LearningProceedings of the Genetic and Evolutionary Computation Conference10.1145/3638529.3653996(1497-1505)Online publication date: 14-Jul-2024
  • (2024)Hybrid particle swarm optimization with adaptive learning strategySoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-024-09814-928:17-18(9759-9784)Online publication date: 1-Sep-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Information Sciences: an International Journal
Information Sciences: an International Journal  Volume 294, Issue C
February 2015
683 pages

Publisher

Elsevier Science Inc.

United States

Publication History

Published: 10 February 2015

Author Tags

  1. Particle swarm optimization
  2. Radar system design
  3. Self regulating inertia weight
  4. Self regulating particle swarm optimization
  5. Self-perception on search direction

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Optimization of Biped Robot Walking Based on the Improved Particle Swarm AlgorithmInternational Journal of Intelligent Systems10.1155/2024/66890712024Online publication date: 1-Jan-2024
  • (2024)Auto-configuring Exploration-Exploitation Tradeoff in Evolutionary Computation via Deep Reinforcement LearningProceedings of the Genetic and Evolutionary Computation Conference10.1145/3638529.3653996(1497-1505)Online publication date: 14-Jul-2024
  • (2024)Hybrid particle swarm optimization with adaptive learning strategySoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-024-09814-928:17-18(9759-9784)Online publication date: 1-Sep-2024
  • (2024)A modified hybrid particle swarm optimization based on comprehensive learning and dynamic multi-swarm strategySoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-023-09332-028:5(3879-3903)Online publication date: 1-Mar-2024
  • (2023)Quantum-behaved particle swarm optimization with dynamic grouping searching strategyIntelligent Data Analysis10.3233/IDA-22675327:3(769-789)Online publication date: 1-Jan-2023
  • (2023)A Particle Swarm Optimization With Adaptive Learning Weights Tuned by a Multiple-Input Multiple-Output Fuzzy Logic ControllerIEEE Transactions on Fuzzy Systems10.1109/TFUZZ.2022.322746431:7(2464-2478)Online publication date: 1-Jul-2023
  • (2023)Hierarchical learning particle swarm optimization using fuzzy logicExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.120759232:COnline publication date: 1-Dec-2023
  • (2023)An adaptive balance optimization algorithm and its engineering applicationAdvanced Engineering Informatics10.1016/j.aei.2023.10190855:COnline publication date: 1-Jan-2023
  • (2023)A hybrid meta-heuristic ensemble based classification technique speech emotion recognitionAdvances in Engineering Software10.1016/j.advengsoft.2023.103412180:COnline publication date: 1-Jun-2023
  • (2023)An improved cooperation search algorithm for the multi-degree reduction in Ball Bézier surfacesSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-023-07847-027:16(11687-11714)Online publication date: 11-Feb-2023
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media