[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
short-survey

Multi-sensor integrated navigation/positioning systems using data fusion: : From analytics-based to learning-based approaches

Published: 01 July 2023 Publication History

Abstract

Navigation/positioning systems have become critical to many applications, such as autonomous driving, Internet of Things (IoT), Unmanned Aerial Vehicle (UAV), and smart cities. However, it is difficult to provide a robust, accurate, and seamless solution with single navigation/positioning technology. For example, the Global Navigation Satellite System (GNSS) cannot perform satisfactorily indoors; consequently, multi-sensor integrated systems provide the solution, as they compensate for the limitations of single technology by using the complementary characteristics of different sensors. This article describes a thorough investigation into multi-sensor data fusion, which over the last ten years has been used for integrated positioning/navigation systems. In this article, different navigation/positioning systems are classified and elaborated upon from three aspects: (1) sources, (2) algorithms and architectures, and (3) scenarios, which we further divide into two categories: (i) analytics-based fusion and (ii) learning-based fusion. For analytics-based fusion, we discuss the Kalman filter and its variants, graph optimization methods, and integrated schemes. For learning-based fusion, several supervised, unsupervised, reinforcement learning, and deep learning techniques are illustrated in multi-sensor integrated positioning/navigation systems. Design consideration of these integrated systems is discussed in detail from several aspects and their application scenarios are categorized. Finally, future directions for their research and implementation are discussed.

Highlights

Classifying integrated navigation systems with sources, algorithms, and scenarios.
Classifying multi-sensor fusion based on absolute and relative positioning sources.
Analytics-based and learning-based algorithms are discussed and classified.
Design considerations include state selection, observability, time synchronization.
Classifying application scenarios into 6 categories, including automated driving.

References

[1]
Titterton D.H., Weston J.L., Strapdown Inertial Navigation Technology, second ed., Institution of Engineering and Technology, 2004.
[2]
Grewal M.S., Weill L.R., Andrews A.P., Global Positioning Systems, Inertial Navigation, and Integration, second ed., Wiley-Interscience, Hoboken, N.J, 2007.
[3]
Zhuang Y., Hua L., Qi L., Yang J., Cao P., Cao Y., Wu Y., Thompson J., Haas H., A survey of positioning systems using visible LED lights, IEEE Commun. Surv. Tutor. 20 (3) (2018) 1963–1988.
[4]
Zhuang Y., Syed Z., Li Y., El-Sheimy N., Evaluation of two WiFi positioning systems based on autonomous crowdsourcing of handheld devices for indoor navigation, IEEE Trans. Mob. Comput. 15 (8) (2016) 1982–1995.
[5]
Zhuang Y., Yang J., Li Y., Qi L., El-Sheimy N., Smartphone-based indoor localization with bluetooth low energy beacons, Sensors 16 (5) (2016) 596.
[6]
Zhou J., Shi J., RFID localization algorithms and applications-a review, J. Intell. Manuf. 20 (6) (2009) 695.
[7]
Siwiak K., McKeown D., Ultra-Wideband Radio Technology, John Wiley & Sons, 2005.
[8]
Priyantha N.B., Chakraborty A., Balakrishnan H., The cricket location-support system, in: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, ACM, 2000, pp. 32–43.
[9]
Qiuying W., Zheng G., Minghui Z., Xufei C., Hui W., Li J., Research on pedestrian location based on dual MIMU/magnetometer/ultrasonic module, in: Position, Location and Navigation Symposium (PLANS), 2018 IEEE/ION, IEEE, 2018, pp. 565–570.
[10]
Georgy J., Karamat T., Iqbal U., Noureldin A., Enhanced MEMS-IMU/odometer/GPS integration using mixture particle filter, GPS Solut. 15 (3) (2011) 239–252.
[11]
Yan J., He G., Basiri A., Hancock C., Vision-aided indoor pedestrian dead reckoning, in: 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), IEEE, 2018, pp. 1–6.
[12]
Xu W., Cai Y., He D., Lin J., Zhang F., FAST-LIO2: Fast direct LiDAR-inertial odometry, IEEE Trans. Robot. 38 (4) (2022) 2053–2073.
[13]
Chen L., Zhou X., Chen F., Yang L.L., Chen R., Carrier phase ranging for indoor positioning with 5G NR signals, IEEE Internet Things J. 9 (13) (2022) 10908–10919.
[14]
Zhuang Y., Yang J., Qi L., Li Y., Cao Y., El-Sheimy N., A pervasive integration platform of low-cost MEMS sensors and wireless signals for indoor localization, IEEE Internet Things J. 5 (6) (2018) 4616–4631.
[15]
Ben-Afia A., Deambrogio L., Salos D., Escher A.-C., Macabiau C., Soulier L., Gay-Bellile V., Review and classification of vision-based localisation techniques in unknown environments, IET Radar Sonar Navig. 8 (9) (2014) 1059–1072.
[16]
White F.E., Data Fusion Lexicon, Joint Directors of Labs Washington DC, 1991.
[17]
Afshari H.H., Gadsden S.A., Habibi S., Gaussian filters for parameter and state estimation: A general review of theory and recent trends, Signal Process. 135 (2017) 218–238.
[18]
Loebis D., Sutton R., Chudley J., Review of multisensor data fusion techniques and their application to autonomous underwater vehicle navigation, J. Mar. Eng. Technol. 1 (1) (2002) 3–14.
[19]
Smith D., Singh S., Approaches to multisensor data fusion in target tracking: A survey, IEEE Trans. Knowl. Data Eng. 18 (12) (2006) 1696–1710.
[20]
Yassin A., Nasser Y., Awad M., Al-Dubai A., Liu R., Yuen C., Raulefs R., Aboutanios E., Recent advances in indoor localization: A survey on theoretical approaches and applications, IEEE Commun. Surv. Tutor. 19 (2) (2017) 1327–1346.
[21]
Guo X., Ansari N., Hu F., Shao Y., Elikplim N.R., Li L., A survey on fusion-based indoor positioning, IEEE Commun. Surv. Tutor. 22 (1) (2020) 566–594.
[22]
El-Sheimy N., Inertial Techniques and INS/DGPS Integration, Department of Geomatics Engineering, University of Calgary, 2006.
[23]
Zhuang Y., El-Sheimy N., Tightly-coupled integration of WiFi and MEMS sensors on handheld devices for indoor pedestrian navigation, IEEE Sens. J. 16 (1) (2016) 224–234.
[24]
Groves P., Principles of GNSS, Inertial, and Multi-Sensor Integrated Navigation Systems, Artech House, 2008.
[25]
Farrell J., Barth M., The Global Positioning System and Inertial Navigation, McGraw-Hill, New York, 1999.
[26]
Gao Z., Li Y., Zhuang Y., Yang H., Pan Y., Zhang H., Robust Kalman filter aided GEO/IGSO/GPS raw-PPP/INS tight integration, Sensors 19 (2) (2019) 417.
[27]
Skog I., Handel P., In-car positioning and navigation technologies—A survey, IEEE Trans. Intell. Transp. Syst. 10 (1) (2009) 4–21.
[28]
Feng K., Li J., Zhang X., Zhang X., Shen C., Cao H., Yang Y., Liu J., An improved strong tracking Cubature Kalman filter for GPS/INS integrated navigation systems, Sensors (Basel, Switzerland) 18 (6) (2018).
[29]
Li Z., Chang G., Gao J., Wang J., Hernandez A., GPS/UWB/MEMS-IMU tightly coupled navigation with improved robust Kalman filter, Adv. Space Res. 58 (11) (2016) 2424–2434.
[30]
Liu Y., Fan X., Lv C., Wu J., Li L., Ding D., An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles, Mech. Syst. Signal Process. 100 (2018) 605–616.
[31]
Shen F., Hao S., Wu X., Guo C., INS/GPS tightly integrated algorithm with reduced square-root Cubature Kalman filter, in: Control Conference (CCC), 2016 35th Chinese, IEEE, 2016, pp. 5547–5550.
[32]
Zhuang Y., Chang H.W., El-Sheimy N., A MEMS multi-sensors system for pedestrian navigation, in: China Satellite Navigation Conference (CSNC) 2013 Proceedings, Springer, 2013, pp. 651–660.
[33]
Cheng J., Yang L., Li Y., Zhang W., Seamless outdoor/indoor navigation with WIFI/GPS aided low cost inertial navigation system, Phys. Commun. 13 (2014) 31–43.
[34]
K. Gryte, J.M. Hansen, T. Johansen, T.I. Fossen, Robust Navigation of UAV using inertial sensors aided by UWB and RTK GPS, in: AIAA Guidance, Navigation, and Control Conference, 2017, p. 1035.
[35]
Li Z., Wang R., Gao J., Wang J., An approach to improve the positioning performance of GPS/INS/UWB integrated system with two-step filter, Remote Sens. 10 (1) (2017) 19.
[36]
Wang J., Gao Y., Li Z., Meng X., Hancock C.M., A tightly-coupled GPS/INS/UWB cooperative positioning sensors system supported by V2I communication, Sensors 16 (7) (2016) 944.
[37]
Hasan A.M., Samsudin K., Ramli A.R., Azmir R.S., Ismaeel S.A., A review of navigation systems (integration and algorithms), Aust. J. Basic Appl. Sci. 3 (2) (2009) 943–959.
[38]
Sevincer A., Bhattarai A., Bilgi M., Yuksel M., Pala N., LIGHTNETs: Smart LIGHTing and mobile optical wireless NETworks—A survey, IEEE Commun. Surv. Tutor. 15 (4) (2013) 1620–1641.
[39]
Hua L., Zhuang Y., Qi L., Yang J., Shi L., Noise analysis and modeling in visible light communication using Allan variance, IEEE Access 6 (2018) 74320–74327.
[40]
Karunatilaka D., Zafar F., Kalavally V., Parthiban R., LED based indoor visible light communications: State of the art, IEEE Commun. Surv. Tutor. 17 (3) (2015) 1649–1678.
[41]
Sun X., Zhuang Y., Huai J., Hua L., Chen D., Li Y., Cao Y., Chen R., RSS-based visible light positioning using nonlinear optimization, IEEE Internet Things J. 9 (15) (2022) 14137–14150.
[42]
Lou P., Zhang H., Zhang X., Yao M., Xu Z., Fundamental analysis for indoor visible light positioning system, in: Communications in China Workshops (ICCC), 2012 1st IEEE International Conference on, IEEE, 2012, pp. 59–63.
[43]
Kim H.-S., Kim D.-R., Yang S.-H., Son Y.-H., Han S.-K., An indoor visible light communication positioning system using a RF carrier allocation technique, J. Lightwave Technol. 31 (1) (2013) 134–144.
[44]
Jung S.Y., Hann S., Park C.S., TDOA-based optical wireless indoor localization using LED ceiling lamps, IEEE Trans. Consum. Electron. 57 (4) (2011) 1592–1597.
[45]
Vongkulbhisal J., Chantaramolee B., Zhao Y., Mohammed W.S., A fingerprinting-based indoor localization system using intensity modulation of light emitting diodes, Microw. Opt. Technol. Lett. 54 (5) (2012) 1218–1227.
[46]
Bachtler M., Carrera J., Braun T., Kalman Filter Supported WiFi and PDR Based Indoor Positioning System, Vol. 12, University of Bern, Bern, Switzerland, 2018, pp. 23–30. (2).
[47]
Liu H., Darabi H., Banerjee P., Liu J., Survey of wireless indoor positioning techniques and systems, IEEE Trans. Syst. Man Cybern. C (Appl. Rev.) 37 (6) (2007) 1067–1080.
[48]
Zhuang Y., Li Y., Syed Z., Lan H., El-Sheimy N., Wireless access point localization and propagation parameter determination using nonlinear least squares and multi-level quality control, IEEE Wirel. Commun. Lett. (2015).
[49]
Tan J., Fan X., Wang S., Ren Y., Optimization-based Wi-Fi radio map construction for indoor positioning using only smart phones, Sensors (Basel) 18 (9) (2018).
[50]
Zhuang Y., Zhang C., Huai J., Li Y., Chen L., Chen R., Bluetooth localization technology: Principles, applications, and future trends, IEEE Internet Things J. 9 (23) (2022) 23506–23524.
[51]
F. Yin, Y. Zhao, F. Gunnarsson, Proximity report triggering threshold optimization for network-based indoor positioning, in: Information Fusion (Fusion), 2015 18th International Conference on, 2015, pp. 1061–1069.
[52]
E.S. Lohan, J. Talvitie, P. Figueiredo e Silva, H. Nurminen, S. Ali-Loytty, R. Piche, Received signal strength models for WLAN and BLE-based indoor positioning in multi-floor buildings, in: Localization and GNSS (ICL-GNSS), 2015 International Conference on, 2015, pp. 1–6.
[53]
Y. Zhao, F. Yin, F. Gunnarsson, M. Amirijoo, E. Özkan, F. Gustafsson, Particle filtering for positioning based on proximity reports, in: Information Fusion (Fusion), 2015 18th International Conference on, 2015, pp. 1046–1052.
[54]
A. Thaljaoui, T. Val, N. Nasri, D. Brulin, BLE localization using RSSI measurements and iRingLA, in: Industrial Technology (ICIT), 2015 IEEE International Conference on, 2015, pp. 2178–2183.
[55]
Z. Li, L. Xiao, S. Jie, C. Gurrin, Z. Zhiliang, A Comprehensive Study of Bluetooth Fingerprinting-Based Algorithms for Localization, in: Advanced Information Networking and Applications Workshops (WAINA), 2013 27th International Conference on, 2013, pp. 300–305.
[56]
Arvanitopoulos A., Gialelis J., Koubias S., Energy efficient indoor localization utilizing BT 4.0 strapdown inertial navigation system, in: Proceedings of the 2014 IEEE Emerging Technology and Factory Automation, ETFA, IEEE, 2014, pp. 1–5.
[57]
Li J., Guo M., Li S., An indoor localization system by fusing smartphone inertial sensors and bluetooth low energy beacons, in: 2017 2nd International Conference on Frontiers of Sensors Technologies, ICFST, IEEE, 2017, pp. 317–321.
[58]
Yoon P.K., Zihajehzadeh S., Kang B.-S., Park E.J., Adaptive Kalman filter for indoor localization using Bluetooth Low Energy and inertial measurement unit, in: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, IEEE, 2015, pp. 825–828.
[59]
Maghdid H.S., Al-Sherbaz A., Aljawad N., Lami I.A., UNILS: Unconstrained indoors localization scheme based on cooperative smartphones networking with onboard inertial, Bluetooth and GNSS devices, in: 2016 IEEE/ION Position, Location and Navigation Symposium, PLANS, IEEE, 2016, pp. 129–136.
[60]
Suryavanshi N.B., Reddy K.V., Chandrika V.R., Direction finding capability in bluetooth 5.1 standard, in: International Conference on Ubiquitous Communications and Network Computing, Springer, 2019, pp. 53–65.
[61]
Huang C., Zhuang Y., Liu H., Li J., Wang W., A performance evaluation framework for direction finding using BLE AoA/AoD receivers, IEEE Internet Things J. 8 (5) (2021) 3331–3345.
[62]
Sanpechuda T., Kovavisaruch L., A review of RFID localization: Applications and techniques, in: Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2008. ECTI-CON 2008. 5th International Conference on, Vol. 2, IEEE, 2008, pp. 769–772.
[63]
Ruiz A.R.J., Granja F.S., Honorato J.C.P., Rosas J.I.G., Accurate pedestrian indoor navigation by tightly coupling foot-mounted IMU and RFID measurements, IEEE Trans. Instrum. Meas. 61 (1) (2012) 178–189.
[64]
Bharadwaj R., Swaisaenyakorn S., Parini C.G., Batchelor J., Alomainy A., Localization of wearable ultrawideband antennas for motion capture applications, IEEE Antennas Wirel. Propag. Lett. 13 (2014) 507–510.
[65]
Kok M., Hol J.D., Schön T.B., Indoor positioning using ultrawideband and inertial measurements, IEEE Trans. Veh. Technol. 64 (4) (2015) 1293–1303.
[66]
Yang D., Li H., Zhang Z., Peterson G.D., Compressive sensing based sub-mm accuracy UWB positioning systems: A space–time approach, Digit. Signal Process. 23 (1) (2013) 340–354.
[67]
Deißler T., Janson M., Zetik R., Thielecke J., Infrastructureless indoor mapping using a mobile antenna array, in: Systems, Signals and Image Processing (IWSSIP), 2012 19th International Conference on, IEEE, 2012, pp. 36–39.
[68]
Leitinger E., Fröhle M., Meissner P., Witrisal K., Multipath-assisted maximum-likelihood indoor positioning using UWB signals, in: Communications Workshops (ICC), 2014 IEEE International Conference on, IEEE, 2014, pp. 170–175.
[69]
Alarifi A., Al-Salman A., Alsaleh M., Alnafessah A., Al-Hadhrami S., Al-Ammar M.A., Al-Khalifa H.S., Ultra wideband indoor positioning technologies: Analysis and recent advances, Sensors 16 (5) (2016) 707.
[70]
Ward A., Jones A., Hopper A., A new location technique for the active office, IEEE Pers. Commun. 4 (5) (1997) 42–47.
[71]
Ijaz F., Yang H.K., Ahmad A.W., Lee C., Indoor positioning: A review of indoor ultrasonic positioning systems, in: Advanced Communication Technology (ICACT), 2013 15th International Conference on, IEEE, 2013, pp. 1146–1150.
[72]
Kim H.-S., Choi J.-S., Advanced indoor localization using ultrasonic sensor and digital compass, in: Control, Automation and Systems, 2008. ICCAS 2008. International Conference on, IEEE, 2008, pp. 223–226.
[73]
Raab F.H., Blood E.B., Steiner T.O., Jones H.R., Magnetic position and orientation tracking system, IEEE Trans. Aerosp. Electron. Syst. (5) (1979) 709–718.
[74]
Li Y., Zhuang Y., Lan H., Zhang P., Niu X., El-Sheimy N., Self-contained indoor pedestrian navigation using smartphone sensors and magnetic features, IEEE Sens. J. 16 (19) (2016) 7173–7182.
[75]
Li Y., Zhuang Y., Zhang P., Lan H., Niu X., El-Sheimy N., An improved inertial/wifi/magnetic fusion structure for indoor navigation, Inf. Fusion 34 (2017) 101–119.
[76]
Li Z., Wang J., Li B., Gao J., Tan X., GPS/INS/Odometer integrated system using fuzzy neural network for land vehicle navigation applications, J. Navig. 67 (6) (2014) 967–983.
[77]
Georgy J., Noureldin A., Korenberg M.J., Bayoumi M.M., Modeling the stochastic drift of a MEMS-based gyroscope in gyro/odometer/GPS integrated navigation, IEEE Trans. Intell. Transp. Syst. 11 (4) (2010) 856–872.
[78]
Rodriguez J.J., Aggarwal J., Matching aerial images to 3-D terrain maps, IEEE Trans. Pattern Anal. Mach. Intell. 12 (12) (1990) 1138–1149.
[79]
Wu Y., Tang F., Li H., Image-based camera localization: an overview, Vis. Comput. Ind. Biomed. Art 1 (1) (2018) 8.
[80]
Piasco N., Sidibé D., Demonceaux C., Gouet-Brunet V., A survey on Visual-Based Localization: On the benefit of heterogeneous data, Pattern Recognit. 74 (2018) 90–109.
[81]
Chen D.M., Baatz G., Köser K., Tsai S.S., Vedantham R., Pylvänäinen T., Roimela K., Chen X., Bach J., Pollefeys M., Girod B., Grzeszczuk R., City-scale landmark identification on mobile devices, in: CVPR 2011, 2011, pp. 737–744.
[82]
B. Zeisl, T. Sattler, M. Pollefeys, Camera Pose Voting for Large-Scale Image-Based Localization, in: 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2704–2712.
[83]
Dutta A., Mondal A., Dey N., Sen S., Moraru L., Hassanien A.E., Vision tracking: A survey of the state-of-the-art, SN Comput. Sci. 1 (1) (2020) 57.
[84]
Davison A.J., Reid I.D., Molton N.D., Stasse O., MonoSLAM: Real-time single camera SLAM, IEEE Trans. Pattern Anal. Mach. Intell. 29 (6) (2007) 1052–1067.
[85]
Mur-Artal R., Montiel J.M.M., Tardos J.D., ORB-SLAM: a versatile and accurate monocular SLAM system, IEEE Trans. Robot. 31 (5) (2015) 1147–1163.
[86]
Engel J., Koltun V., Cremers D., Direct sparse odometry, IEEE Trans. Pattern Anal. Mach. Intell. 40 (3) (2017) 611–625.
[87]
Ferrera M., Eudes A., Moras J., Sanfourche M., Le Besnerais G., Ov2SLAM: A fully online and versatile visual SLAM for real-time applications, IEEE Robot. Autom. Lett. 6 (2) (2021) 1399–1406.
[88]
Younes G., Asmar D., Shammas E., Zelek J., Keyframe-based monocular SLAM: design, survey, and future directions, Robot. Auton. Syst. 98 (2017) 67–88.
[89]
Chen C., Wang B., Lu C.X., Trigoni N., Markham A., A survey on deep learning for localization and mapping: Towards the age of spatial machine intelligence, 2020, arXiv preprint arXiv:2006.12567.
[90]
Mourikis A.I., Roumeliotis S.I., A multi-state constraint Kalman filter for vision-aided inertial navigation, in: Proceedings 2007 IEEE International Conference on Robotics and Automation, IEEE, 2007, pp. 3565–3572.
[91]
Leutenegger S., Lynen S., Bosse M., Siegwart R., Furgale P., Keyframe-based visual–inertial odometry using nonlinear optimization, Int. J. Robot. Res. 34 (3) (2015) 314–334.
[92]
Qin T., Li P., Shen S., Vins-mono: A robust and versatile monocular visual-inertial state estimator, IEEE Trans. Robot. 34 (4) (2018) 1004–1020.
[93]
J. Huai, C.K. Toth, D.A. Grejner-Brzezinska, Stereo-inertial odometry using nonlinear optimization, in: Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2015), 2015, pp. 2087–2097.
[94]
P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, G. Huang, OpenVINS: A Research Platform for Visual-Inertial Estimation, in: 2020 IEEE International Conference on Robotics and Automation, ICRA, 2020, pp. 4666–4672.
[95]
Campos C., Elvira R., Rodríguez J.J.G., Montiel J.M.M., Tardós J.D., ORB-SLAM3: An accurate open-source library for visual, visual–inertial, and multimap SLAM, IEEE Trans. Robot. 37 (6) (2021) 1874–1890.
[96]
Cadena C., Carlone L., Carrillo H., Latif Y., Scaramuzza D., Neira J., Reid I., Leonard J.J., Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age, IEEE Trans. Robot. 32 (6) (2016) 1309–1332.
[97]
A. Fernández, J. Diez, D. d. Castro, P.F. Silva, I. Colomina, F. Dovis, P. Friess, M. Wis, J. Lindenberger, I. Fernández, ATENEA: Advanced techniques for deeply integrated GNSS/INS/LiDAR navigation, in: 2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, NAVITEC, 2010, pp. 1–8.
[98]
Gao Y., Liu S., Atia M.M., Noureldin A., INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm, Sensors 15 (9) (2015).
[99]
Atia M.M., Liu S., Nematallah H., Karamat T.B., Noureldin A., Integrated indoor navigation system for ground vehicles with automatic 3-D alignment and position initialization, IEEE Trans. Veh. Technol. 64 (4) (2015) 1279–1292.
[100]
C. Qin, H. Ye, C.E. Pranata, J. Han, S. Zhang, M. Liu, LINS: A Lidar-Inertial State Estimator for Robust and Efficient Navigation, in: 2020 IEEE International Conference on Robotics and Automation, ICRA, pp. 8899–8906.
[101]
J. Zhang, S. Singh, LOAM: Lidar odometry and mapping in real-time, in: Robotics: Science and Systems, Vol. 2, Berkeley, CA, pp. 1–9.
[102]
T. Shan, B. Englot, LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain, in: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2018, pp. 4758–4765.
[103]
H. Wang, C. Wang, C.-L. Chen, L. Xie, F-LOAM : Fast LiDAR Odometry and Mapping, in: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2021, pp. 4390–4396.
[104]
T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, D. Rus, Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping, in: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, pp. 5135–5142.
[105]
Wang Z., Wu Y., Niu Q., Multi-sensor fusion in automated driving: A survey, IEEE Access 8 (2020) 2847–2868.
[106]
Yeong D.J., Velasco-Hernandez G., Barry J., Walsh J., Sensor and sensor fusion technology in autonomous vehicles: A review, Sensors 21 (6) (2021) 2140.
[107]
Laoudias C., Moreira A., Kim S., Lee S., Wirola L., Fischione C., A survey of enabling technologies for network localization, tracking, and navigation, IEEE Commun. Surv. Tutor. 20 (4) (2018) 3607–3644.
[108]
Shamaei K., Kassas Z.M., Receiver design and time of arrival estimation for opportunistic localization with 5G signals, IEEE Trans. Wireless Commun. 20 (7) (2021) 4716–4731.
[109]
A. Decurninge, L.G. Ordóñez, P. Ferrand, H. Gaoning, L. Bojie, Z. Wei, M. Guillaud, CSI-based Outdoor Localization for Massive MIMO: Experiments with a Learning Approach, in: 2018 15th International Symposium on Wireless Communication Systems, ISWCS, 2018, pp. 1–6.
[110]
Faragher R., Harle R., Location fingerprinting with bluetooth low energy beacons, IEEE J. Sel. Areas Commun. 33 (11) (2015) 2418–2428.
[111]
Chen R., Li Z., Ye F., Guo G., Xu S., Qian L., Liu Z., Huang L., Precise indoor positioning based on acoustic ranging in smartphone, IEEE Trans. Instrum. Meas. 70 (2021) 1–12.
[112]
Zhao H., Wang Z., Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended kalman filter for data fusion, IEEE Sens. J. 12 (5) (2012) 943–953.
[113]
Yang H., Zhang R., Bordoy J., Höflinger F., Li W., Schindelhauer C., Reindl L., Smartphone-based indoor localization system using inertial sensor and acoustic transmitter/receiver, IEEE Sens. J. 16 (22) (2016) 8051–8061.
[114]
Wu L., Wang H., Chai H., Zhang L., Hsu H., Wang Y., Performance evaluation and analysis for gravity matching aided navigation, Sensors 17 (4) (2017).
[115]
Leppäkoski H., Collin J., Takala J., Pedestrian navigation based on inertial sensors, indoor map, and WLAN signals, J. Signal Process. Syst. 71 (3) (2013) 287–296.
[116]
Yu C., Lan H., Gu F., Yu F., El-Sheimy N., A map/INS/Wi-Fi integrated system for indoor location-based service applications, Sensors 17 (6) (2017) 1272.
[117]
Cui Y., Ge S.S., Autonomous vehicle positioning with GPS in urban canyon environments, IEEE Trans. Robot. Autom. 19 (1) (2003) 15–25.
[118]
Gao S., Zhong Y., Zhang X., Shirinzadeh B., Multi-sensor optimal data fusion for INS/GPS/SAR integrated navigation system, Aerosp. Sci. Technol. 13 (4) (2009) 232–237.
[119]
Harle R., A survey of indoor inertial positioning systems for pedestrians, IEEE Commun. Surv. Tutor. 15 (3) (2013) 1281–1293.
[120]
Guo X., Shao W., Zhao F., Wang Q., Li D., Luo H., WiMag: Multimode fusion localization system based on Magnetic/WiFi/PDR, in: Indoor Positioning and Indoor Navigation (IPIN), 2016 International Conference on, IEEE, 2016, pp. 1–8.
[121]
Z.-g. Wu X., Z.-l. Deng W., Wen L., Simulation of fusion localization based on a single WiFi AP and PDR, DEStech Trans. Comput. Sci. Eng. (Mmsta) (2017).
[122]
Yu N., Zhan X., Zhao S., Wu Y., Feng R., A precise dead reckoning algorithm based on bluetooth and multiple sensors, IEEE Internet Things J. 5 (1) (2018) 336–351.
[123]
Zuo Z., Liu L., Zhang L., Fang Y., Indoor positioning based on bluetooth low-energy beacons adopting graph optimization, Sensors (Basel) 18 (11) (2018).
[124]
Wang X., Zhuang Y., Zhang Z., Cao X., Qin F., Yang X., Sun X., Shi M., Wang Z., Tightly-coupled integration of pedestrian dead reckoning and bluetooth based on filter and optimizer, IEEE Internet Things J. (2022) 1.
[125]
Zampella F., Seco F., Robust indoor positioning fusing PDR and RF technologies: The RFID and UWB case, in: Indoor Positioning and Indoor Navigation (IPIN), 2013 International Conference on, IEEE, 2013, pp. 1–10.
[126]
Chen P., Kuang Y., Chen X., A UWB/improved PDR integration algorithm applied to dynamic indoor positioning for pedestrians, Sensors 17 (9) (2017) 2065.
[127]
Dusha D., Mejias L., Error analysis and attitude observability of a monocular GPS/visual odometry integrated navigation filter, Int. J. Robot. Res. 31 (6) (2012) 714–737.
[128]
Zhang P., Xu Y., Chen R., Dong W., Li Y., Yu R., Dong M., Liu Z., Zhuang Y., Kuang J., A multimagnetometer array and inner IMU-based capsule endoscope positioning system, IEEE Internet Things J. 9 (21) (2022) 21194–21203.
[129]
Kunhoth J., Karkar A., Al-Maadeed S., Al-Attiyah A., Comparative analysis of computer-vision and BLE technology based indoor navigation systems for people with visual impairments, Int. J. Health Geogr. 18 (1) (2019) 29.
[130]
Dong J., Noreikis M., Xiao Y., Ylä-Jääski A., ViNav: A vision-based indoor navigation system for smartphones, IEEE Trans. Mob. Comput. 18 (6) (2019) 1461–1475.
[131]
Benini A., Mancini A., Longhi S., An imu/uwb/vision-based extended kalman filter for mini-uav localization in indoor environment using 802.15.4a wireless sensor network, J. Intell. Robot. Syst. 70 (1–4) (2013) 461–476.
[132]
Ning X., Gui M., Xu Y., Bai X., Fang J., INS/VNS/CNS integrated navigation method for planetary rovers, Aerosp. Sci. Technol. 48 (2016) 102–114.
[133]
Karamat T.B., Lins R.G., Givigi S.N., Noureldin A., Novel EKF-based vision/inertial system integration for improved navigation, IEEE Trans. Instrum. Meas. 67 (1) (2018) 116–125.
[134]
Meng Y., Wang W., Han H., Zhang M., A vision/radar/INS integrated guidance method for shipboard landing, IEEE Trans. Ind. Electron. 66 (11) (2019) 8803–8810.
[135]
Zhang C., Guo C., Zhang D., Ship navigation via GPS/IMU/LOG integration using adaptive fission particle filter, Ocean Eng. 156 (2018) 435–445.
[136]
Y. Geng, R. Martins, J. Sousa, Accuracy analysis of DVL/IMU/magnetometer integrated navigation system using different IMUs in AUV, in: IEEE ICCA 2010, 2010, pp. 516–521.
[137]
Wang D., Xu X., Yao Y., Zhang T., Virtual DVL reconstruction method for an integrated navigation system based on DS-LSSVM algorithm, IEEE Trans. Instrum. Meas. 70 (2021) 1–13.
[138]
Zhuang Y., Lan H., Li Y., El-Sheimy N., PDR/INS/WiFi integration based on handheld devices for indoor pedestrian navigation, Micromachines 6 (6) (2015) 793.
[139]
Kanaris L., Kokkinis A., Liotta A., Stavrou S., Fusing bluetooth beacon data with Wi-Fi radiomaps for improved indoor localization, Sensors 17 (4) (2017) 812.
[140]
Su H.-K., Lıao Z.-X., Lin C.-H., Lin T.-M., A hybrid indoor-position mechanism based on bluetooth and WiFi communications for smart mobile devices, in: 2015 International Symposium on Bioelectronics and Bioinformatics, ISBB, IEEE, 2015, pp. 188–191.
[141]
Xiong Z., Sottile F., Spirito M.A., Garello R., Hybrid indoor positioning approaches based on WSN and RFID, in: New Technologies, Mobility and Security (NTMS), 2011 4th IFIP International Conference on, IEEE, 2011, pp. 1–5.
[142]
Bai L., Sun C., Dempster A.G., Zhao H., Cheong J.W., Feng W., GNSS-5G hybrid positioning based on multi-rate measurements fusion and proactive measurement uncertainty prediction, IEEE Trans. Instrum. Meas. 71 (2022) 1–15.
[143]
Li F., Tu R., Hong J., Zhang S., Zhang P., Lu X., Combined positioning algorithm based on BeiDou navigation satellite system and raw 5G observations, Measurement 190 (2022) (2000).
[144]
Liu J., Cai B., Wang J., Cooperative localization of connected vehicles: Integrating GNSS with DSRC using a robust Cubature Kalman filter, IEEE Trans. Intell. Transp. Syst. 18 (8) (2017) 2111–2125.
[145]
G.M. Hoangt, B. Denis, J. Häirri, D. Slock, Cooperative Localization in VANETs: An Experimental Proof-of-Concept Combining GPS, IR-UWB Ranging and V2V Communications, in: 2018 15th Workshop on Positioning, Navigation and Communications, WPNC, 2018, pp. 1–6.
[146]
Wei Z., Ma S., Hua Z., Jia H., Zhao Z., Train integrated positioning method based on GPS/ins/RFID, in: 2016 35th Chinese Control Conference, CCC, IEEE, 2016, pp. 5858–5862.
[147]
Georgy J., Noureldin A., Goodall C., Vehicle navigator using a mixture particle filter for inertial sensors/odometer/map data/GPS integration, IEEE Trans. Consum. Electron. 58 (2) (2012) 544–552.
[148]
Hao Y., Zhang Z., Xia Q., Research on data fusion for SINS/GPS/magnetometer integrated navigation based on modified CDKF, in: Progress in Informatics and Computing (PIC), 2010 IEEE International Conference on, Vol. 2, IEEE, 2010, pp. 1215–1219.
[149]
M. Langer, S. Kiesel, C. Ascher, G.F. Trommer, Deeply Coupled GPS/INS integration in pedestrian navigation systems in weak signal conditions, in: 2012 International Conference on Indoor Positioning and Indoor Navigation, IPIN, 2012, pp. 1–7.
[150]
Zihajehzadeh S., Yoon P.K., Kang B., Park E.J., UWB-aided inertial motion capture for lower body 3-D dynamic activity and trajectory tracking, IEEE Trans. Instrum. Meas. 64 (12) (2015) 3577–3587.
[151]
Herrera J.A., Hinkenjann A., Ploger P., Maiero J., Robust indoor localization using optimal fusion filter for sensors and map layout information, in: Indoor Positioning and Indoor Navigation (IPIN), 2013 International Conference on, IEEE, 2013, pp. 1–8.
[152]
Khan M.I., Syrjarinne J., Investigating effective methods for integration of building’s map with low cost inertial sensors and wifi-based positioning, in: Indoor Positioning and Indoor Navigation (IPIN), 2013 International Conference on, IEEE, 2013, pp. 1–8.
[153]
Li Y., Zhuang Y., Lan H., Zhou Q., Niu X., El-Sheimy N., A hybrid WiFi/magnetic matching/PDR approach for indoor navigation with smartphone sensors, IEEE Commun. Lett. 20 (1) (2016) 169–172.
[154]
Li Y., He Z., Gao Z., Zhuang Y., Shi C., El-Sheimy N., Toward robust crowdsourcing-based localization: A fingerprinting accuracy indicator enhanced wireless/magnetic/inertial integration approach, IEEE Internet Things J. 6 (2) (2019) 3585–3600.
[155]
Luo Z., Zhang W., Zhou G., Improved spring model-based collaborative indoor visible light positioning, Opt. Rev. 23 (3) (2016) 479–486.
[156]
Kalman R.E., Contributions to the theory of optimal control, Bol. Soc. Mat. Mexicana 5 (2) (1960) 102–119.
[157]
Chen X., Shen C., Zhang W.-b., Tomizuka M., Xu Y., Chiu K., Novel hybrid of strong tracking Kalman filter and wavelet neural network for GPS/INS during GPS outages, Measurement 46 (10) (2013) 3847–3854.
[158]
Fan Q., Sun B., Sun Y., Zhuang X., Performance enhancement of MEMS-based INS/UWB integration for indoor navigation applications, IEEE Sens. J. (99) (2017) 1.
[159]
Qigao F., Biwen S., Yaheng W., Tightly coupled model for indoor positioning based on uwb/ins, Int. J. Comput. Sci. Issues (IJCSI) 12 (4) (2015) 11.
[160]
Zwirello L., Li X., Zwick T., Ascher C., Werling S., Trommer G.F., Sensor data fusion in UWB-supported inertial navigation systems for indoor navigation, in: Robotics and Automation (ICRA), 2013 IEEE International Conference on, IEEE, 2013, pp. 3154–3159.
[161]
Falco G., Gutiérrez M.C.-C., Serna E., Zacchello F., Bories S., Low-cost real-time tightly-coupled GNSS/INS navigation system based on carrier-phase double-differences for UAV applications, in: Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2014), Tampa, FL, USA, Vol. 812, 2014.
[162]
Fang J., Gong X., Predictive iterated Kalman filter for INS/GPS integration and its application to SAR motion compensation, IEEE Trans. Instrum. Meas. 59 (4) (2010) 909–915.
[163]
Kim K.H., Lee J.G., Park C.G., Adaptive two-stage extended Kalman filter for a fault-tolerant INS-GPS loosely coupled system, IEEE Trans. Aerosp. Electron. Syst. 45 (1) (2009) 125–137.
[164]
Zahran S., Moussa A., El-Sheimy N., Enhanced UAV navigation in GNSS denied environment using repeated dynamics pattern recognition, in: Position, Location and Navigation Symposium (PLANS), 2018 IEEE/ION, IEEE, 2018, pp. 1135–1142.
[165]
Xu Y., Chen X., Li Q., Adaptive iterated extended kalman filter and its application to autonomous integrated navigation for indoor robot, Sci. World J. 2014 (2014).
[166]
Zeng Z., Liu S., Wang W., Wang L., Infrastructure-free indoor pedestrian tracking based on foot mounted UWB/IMU sensor fusion, in: Signal Processing and Communication Systems (ICSPCS), 2017 11th International Conference on, IEEE, 2017, pp. 1–7.
[167]
Xu Y., Chen X., Cheng J., Zhao Q., Wang Y., Improving tightly-coupled model for indoor pedestrian navigation using foot-mounted IMU and UWB measurements, in: Instrumentation and Measurement Technology Conference Proceedings (I2MTC), 2016 IEEE International, IEEE, 2016, pp. 1–5.
[168]
Ganganath N., Leung H., Mobile robot localization using odometry and kinect sensor, in: Emerging Signal Processing Applications (ESPA), 2012 IEEE International Conference on, IEEE, 2012, pp. 91–94.
[169]
Aggarwal P., MEMS-Based Integrated Navigation, Artech House, 2010.
[170]
Jwo D.-J., Yang C.-F., Chuang C.-H., Lee T.-Y., Performance enhancement for ultra-tight GPS/INS integration using a fuzzy adaptive strong tracking unscented Kalman filter, Nonlinear Dynam. 73 (1–2) (2013) 377–395.
[171]
Yuan X., Yu S., Zhang S., Wang G., Liu S., Quaternion-based unscented kalman filter for accurate indoor heading estimation using wearable multi-sensor system, Sensors 15 (5) (2015) 10872–10890.
[172]
Jiang Z., Liu C., Zhang G., Wang Y., Huang C., Liang J., GPS/INS integrated navigation based on UKF and simulated annealing optimized SVM, in: Vehicular Technology Conference (VTC Fall), 2013 IEEE 78th, IEEE, 2013, pp. 1–5.
[173]
Rhudy M., Gu Y., Gross J., Napolitano M.R., Evaluation of matrix square root operations for UKF within a UAV GPS/INS sensor fusion application, Int. J. Navig. Obs. 2011 (2011).
[174]
Wang Q., Li Y., Rizos C., Li S., The UKF and CDKF for low-cost SDINS/GPS in-motion alignment, in: Proceedings of International Symposium on GPS/GNSS, 2008, pp. 441–448.
[175]
Zou Q., Xia W., Zhu Y., Zhang J., Huang B., Yan F., Shen L., A VLC and IMU integration indoor positioning algorithm with weighted unscented Kalman filter, in: Computer and Communications (ICCC), 2017 3rd IEEE International Conference on, IEEE, 2017, pp. 887–891.
[176]
Feng D., Wang C., He C., Zhuang Y., Xia X.-G., Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning and navigation, IEEE Internet Things J. 7 (4) (2020) 3133–3146.
[177]
Kong J., Mao X., Li S., BDS/GPS dual systems positioning based on the modified SR-UKF algorithm, Sensors 16 (5) (2016) 635.
[178]
Ma L.-H., Feng Z.-B., Ying B., Wang Z.-Y., Application of fixed matrix square root UKF in the ultra-tightly coupled integrated GPS/SINS navigation system, ICIC Express Lett. B 6 (1) (2015) 175–180.
[179]
Sandino L.A., Bejar M., Kondak K., Ollero A., Multi-sensor data fusion for a tethered unmanned helicopter using a square-root unscented Kalman filter, Unmanned Syst. 4 (04) (2016) 273–287.
[180]
Liu J., Ma J., Tian J., Pulsar/CNS integrated navigation based on federated UKF, J. Syst. Eng. Electron. 21 (4) (2010) 675–681.
[181]
Xu Q., Li X., Chan C.-Y., A cost-effective vehicle localization solution using an interacting multiple model- unscented Kalman filters (IMM-UKF) algorithm and grey neural network, Sensors 17 (6) (2017) 1431.
[182]
Cho S.Y., IM-filter for INS/GPS-integrated navigation system containing low-cost gyros, IEEE Trans. Aerosp. Electron. Syst. 50 (4) (2014) 2619–2629.
[183]
Chang G., Loosely coupled INS/GPS integration with constant lever arm using marginal unscented Kalman filter, J. Navig. 67 (3) (2014) 419–436.
[184]
Enkhtur M., Cho S.Y., Kim K., Modified unscented Kalman filter for a multirate INS/GPS integrated navigation system, Etri J. 35 (5) (2013) 943–946.
[185]
Hu G., Gao S., Zhong Y., A derivative UKF for tightly coupled INS/GPS integrated navigation, ISA Trans. 56 (2015) 135–144.
[186]
Ngatini, Apriliani E., Nurhadi H., Ensemble and fuzzy Kalman filter for position estimation of an autonomous underwater vehicle based on dynamical system of AUV motion, Expert Syst. Appl. 68 (2017) 29–35.
[187]
Lin X., Sun H., Wang Y., Dynamic positioning particle filtering method based on the EnKF, in: Mechatronics and Automation (ICMA), 2017 IEEE International Conference on, IEEE, 2017, pp. 1871–1876.
[188]
Arulampalam M.S., Maskell S., Gordon N., Clapp T., A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process. 50 (2) (2002) 174–188.
[189]
Woodman O., Harle R., Pedestrian localisation for indoor environments, in: Proceedings of the 10th International Conference on Ubiquitous Computing, ACM, 2008, pp. 114–123.
[190]
Wu Z., Jedari E., Muscedere R., Rashidzadeh R., Improved particle filter based on WLAN RSSI fingerprinting and smart sensors for indoor localization, Comput. Commun. 83 (2016) 64–71.
[191]
Aggarwal P., Syed Z., El-Sheimy N., Hybrid extended particle filter (HEPF) for integrated civilian navigation system, in: Position, Location and Navigation Symposium, 2008 IEEE/ION, IEEE, 2008, pp. 984–992.
[192]
Zhao S., Chen Y., Farrell J.A., High-precision vehicle navigation in urban environments using an MEM’s IMU and single-frequency GPS receiver, IEEE Trans. Intell. Transp. Syst. 17 (10) (2016) 2854–2867.
[193]
Wen W., Bai X., Kan Y.C., Hsu L., Tightly coupled GNSS/INS integration via factor graph and aided by fish-eye camera, IEEE Trans. Veh. Technol. 68 (11) (2019) 10651–10662.
[194]
Li X., Wang X., Liao J., Li X., Li S., Lyu H., Semi-tightly coupled integration of multi-GNSS PPP and S-VINS for precise positioning in GNSS-challenged environments, Satell. Navig. 2 (1) (2021) 1.
[195]
Niu X., Tang H., Zhang T., Fan J., Liu J., IC-GVINS: A robust, real-time, INS-centric GNSS-visual-inertial navigation system, IEEE Robot. Autom. Lett. 8 (1) (2023) 216–223.
[196]
Cao S., Lu X., Shen S., GVINS: Tightly coupled GNSS–Visual–Inertial fusion for smooth and consistent state estimation, IEEE Trans. Robot. 38 (4) (2022) 2004–2021.
[197]
Qin C., Zhan X., VLIP: Tightly coupled visible-light/inertial positioning system to cope with intermittent outage, IEEE Photonics Technol. Lett. 31 (2) (2018) 129–132.
[198]
Meng Q., Song Y., ying Li S., Zhuang Y., Resilient tightly coupled INS/UWB integration method for indoor UAV navigation under challenging scenarios, Def. Technol. (2022).
[199]
Agarwal S., Mierle K., Team T.C.S., Ceres solver, 2022.
[200]
Yu H., Wilamowski B.M., Levenberg–Marquardt Training, CRC Press, 2018.
[201]
Liu H., Nassar S., El-Sheimy N., Two-filter smoothing for accurate INS/GPS land-vehicle navigation in urban centers, IEEE Trans. Veh. Technol. 59 (9) (2010) 4256–4267.
[202]
Li S., Peng Y., Lu Y., Zhang L., Liu Y., MCAV/IMU integrated navigation for the powered descent phase of Mars EDL, Adv. Space Res. 46 (5) (2010) 557–570.
[203]
Li S., Peng Y., Radio beacons/IMU integrated navigation for Mars entry, Adv. Space Res. 47 (7) (2011) 1265–1279.
[204]
Zihajehzadeh S., Yoon P.K., Park E.J., A magnetometer-free indoor human localization based on loosely coupled IMU/UWB fusion, in: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2015, pp. 3141–3144.
[205]
Evennou F., Marx F., Advanced integration of WiFi and inertial navigation systems for indoor mobile positioning, Eurasip J. Appl. Signal Process. 2006 (2006) 164.
[206]
Iwase T., Shibasaki R., Infra-free indoor positioning using only smartphone sensors, in: International Conference on Indoor Positioning and Indoor Navigation, 2013, pp. 1–8.
[207]
Li W.W., Iltis R.A., Win M.Z., A smartphone localization algorithm using RSSI and inertial sensor measurement fusion, in: 2013 IEEE Global Communications Conference, GLOBECOM, 2013, pp. 3335–3340.
[208]
Schatzberg U., Banin L., Amizur Y., Enhanced WiFi ToF indoor positioning system with MEMS-based INS and pedometric information, in: Position, Location and Navigation Symposium-PLANS 2014, 2014 IEEE/ION, IEEE, 2014, pp. 185–192.
[209]
Xiao W., Ni W., Toh Y.K., Integrated Wi-Fi fingerprinting and inertial sensing for indoor positioning, in: 2011 International Conference on Indoor Positioning and Indoor Navigation, 2011, pp. 1–6.
[210]
Zhuang Y., Li Y., Qi L., Lan H., Yang J., El-Sheimy N., A two-filter integration of MEMS sensors and WiFi fingerprinting for indoor positioning, IEEE Sens. J. 16 (13) (2016) 5125–5126.
[211]
Zhou J., Nie X., Lin J., A novel laser Doppler velocimeter and its integrated navigation system with strapdown inertial navigation, Opt. Laser Technol. 64 (2014) 319–323.
[212]
Huh S., Shim D.H., Kim J., Integrated navigation system using camera and gimbaled laser scanner for indoor and outdoor autonomous flight of UAVs, in: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 3158–3163.
[213]
Godha S., Performance Evaluation of Low Cost MEMS-Based IMU Integration with GPS for Land Vehicle Navigation Application, (Thesis) University of Calgary, 2006.
[214]
Falco G., Pini M., Marucco G., Loose and tight GNSS/INS integrations: Comparison of performance assessed in real urban scenarios, Sensors 17 (2) (2017) 255.
[215]
George M., Sukkarieh S., Tightly coupled INS/GPS with bias estimation for UAV applications, in: Proceedings of Australiasian Conference on Robotics and Automation, ACRA, 2005.
[216]
Petovello M.G., Real-Time Integration of a Tactical-Grade IMU and GPS for High-Accuracy Positioning and Navigation, (Thesis) University of Calgary, 2003.
[217]
Li T., Zhang H., Gao Z., Chen Q., Niu X., High-accuracy positioning in urban environments using single-frequency multi-GNSS RTK/MEMS-IMU integration, Remote Sens. 10 (2) (2018) 205.
[218]
Hol J.D., Dijkstra F., Luinge H., Schon T.B., Tightly coupled UWB/IMU pose estimation, in: 2009 IEEE International Conference on Ultra-Wideband, 2009, pp. 688–692.
[219]
Cui P., Wang S., Gao A., Yu Z., X-ray pulsars/Doppler integrated navigation for mars final approach, Adv. Space Res. 57 (9) (2016) 1889–1900.
[220]
Hwang D.B., Lim D.W., Cho S.L., Lee S.J., Unified approach to ultra-tightly-coupled GPS/INS integrated navigation system, IEEE Aerosp. Electron. Syst. Mag. 26 (3) (2011) 30–38.
[221]
Kim J.W., Hwang D.-H., Lee S.J., A deeply coupled GPS/INS integrated Kalman filter design using a linearized correlator output, in: 2006 IEEE/ION Position, Location, and Navigation Symposium, IEEE, 2006, pp. 300–305.
[222]
Lashley M., Bevly D.M., Hung J.Y., A valid comparison of vector and scalar tracking loops, in: IEEE/ION Position, Location and Navigation Symposium, 2010, pp. 464–474.
[223]
E. Amani, Scalar and Vector Tracking Algorithms with Fault Detection and Exclusion for GNSS Receivers: Design and Performance Evaluation, (Thesis), Paris Est, 2017.
[224]
Dou J., Xu B., Dou L., Performance assessment of GNSS scalar and vector frequency tracking loops, Optik 202 (2020).
[225]
Wu M., Ding J., Luo Z., Zhao L., The coherent vector tracking loop design with FDE algorithm for BDS signals, in: 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC, 2016, pp. 835–840.
[226]
Petovello M., O’Driscoll C., Lachapelle G., Weak signal carrier tracking using extended coherent integration with an ultra-tight GNSS/IMU receiver, in: Proc. ENC-GNSS 2008, 2008.
[227]
Gautier J.D., GPS/INS Generalized Evaluation Tool (GIGET) for the Design and Testing of Integrated Navigation Systems, Stanford University, 2003.
[228]
Liu J., Cui X., Lu M., Feng Z., Vector tracking loops in GNSS receivers for dynamic weak signals, J. Syst. Eng. Electron. 24 (3) (2013) 349–364.
[229]
Jiang C., Chen S., Chen Y., Bo Y., Research on a chip scale atomic clock driven GNSS/SINS deeply coupled navigation system for augmented performance, IET Radar Sonar Navig. 13 (2) (2019) 326–331.
[230]
He Z., Wang X., Fang J., An innovative high-precision SINS/CNS deep integrated navigation scheme for the mars rover, Aerosp. Sci. Technol. 39 (2014) 559–566.
[231]
Xiaojuan W., Xinlong W., A SINS/CNS deep integrated navigation method based on mathematical horizon reference, Aircr. Eng. Aerosp. Technol. 83 (1) (2011) 26–34.
[232]
Quinchia A.G., Falco G., Falletti E., Dovis F., Ferrer C., A comparison between different error modeling of MEMS applied to GPS/INS integrated systems, Sensors 13 (8) (2013) 9549–9588.
[233]
Sharaf R., Noureldin A., Osman A., El-Sheimy N., Online INS/GPS integration with a radial basis function neural network, IEEE Aerosp. Electron. Syst. Mag. 20 (3) (2005) 8–14.
[234]
Li D., Jia X., Zhao J., A novel hybrid fusion algorithm for low-cost GPS/INS integrated navigation system during GPS outages, IEEE Access 8 (2020) 53984–53996.
[235]
C.E. Magrin, E. Todt, Multi-Sensor Fusion Method Based on Artificial Neural Network for Mobile Robot Self-Localization, in: 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education, WRE, pp. 138–143.
[236]
Almassri A.M.M., Shirasawa N., Purev A., Uehara K., Oshiumi W., Mishima S., Wagatsuma H., Artificial neural network approach to guarantee the positioning accuracy of moving robots by using the integration of IMU/UWB with motion capture system data fusion, Sensors 22 (15) (2022).
[237]
Xu Z., Li Y., Rizos C., Xu X., Novel hybrid of LS-SVM and Kalman filter for GPS/INS integration, J. Navig. 63 (2) (2010) 289–299.
[238]
Ali J., Strapdown inertial navigation system/astronavigation system data synthesis using innovation-based fuzzy adaptive Kalman filtering, IET Sci. Meas. Technol. 4 (5) (2010) 246–255.
[239]
Tseng C.-H., Lin S.-F., Jwo D.-J., Fuzzy adaptive cubature Kalman filter for integrated navigation systems, Sensors 16 (8) (2016) 1167.
[240]
Escamilla-Ambrosio P.J., Mort N., Multi-sensor data fusion architecture based on adaptive Kalman filters and fuzzy logic performance assessment, in: Information Fusion, 2002. Proceedings of the Fifth International Conference on, Vol. 2, IEEE, 2002, pp. 1542–1549.
[241]
Musavi N., Keighobadi J., Adaptive fuzzy neuro-observer applied to low cost INS/GPS, Appl. Soft Comput. 29 (2015) 82–94.
[242]
Shaukat N., Moinuddin M., Otero P., Underwater vehicle positioning by correntropy-based fuzzy multi-sensor fusion, Sensors 21 (18) (2021).
[243]
Gao H., Li X., Tightly-Coupled Vehicle Positioning Method at Intersections Aided by UWB, Sensors 19 (13) (2019).
[244]
Song X., Li X., Tang W., Zhang W., A fusion strategy for reliable vehicle positioning utilizing RFID and in-vehicle sensors, Inf. Fusion 31 (2016) 76–86.
[245]
Yuan Y., Sun X., Liu Z., Li Y., Guan X., Approach of personnel location in roadway environment based on multi-sensor fusion and activity classification, Comput. Netw. 148 (2019) 34–45.
[246]
Cong L., Tian J., Qin H., A practical floor localization algorithm based on multifeature motion mode recognition utilizing FM radio signals and inertial sensors, IEEE Sens. J. 20 (15) (2020) 8806–8819.
[247]
Zhang G., Hsu L.-T., Intelligent GNSS/INS integrated navigation system for a commercial UAV flight control system, Aerosp. Sci. Technol. 80 (2018) 368–380.
[248]
Adusumilli S., Bhatt D., Wang H., Bhattacharya P., Devabhaktuni V., A low-cost INS/GPS integration methodology based on random forest regression, Expert Syst. Appl. 40 (11) (2013) 4653–4659.
[249]
Adusumilli S., Bhatt D., Wang H., Devabhaktuni V., Bhattacharya P., A novel hybrid approach utilizing principal component regression and random forest regression to bridge the period of GPS outages, Neurocomputing 166 (2015) 185–192.
[250]
Rui C., K-means aided Kalman filter noise estimation calibration for integrated GPS/INS navigation, in: 2016 IEEE International Conference on Intelligent Transportation Engineering, ICITE, 2016, pp. 156–161.
[251]
Li Y., Gao S.S., Yang Y., A novel adaptive UKF and its application in the SINS/GPS integrated navigation, Appl. Mech. Mater. 597 (2014) 521–524.
[252]
Huang D., Leung H., N E.-S., Expectation maximization based GPS/INS integration for land-vehicle navigation, IEEE Trans. Aerosp. Electron. Syst. 43 (3) (2007) 1168–1177.
[253]
Laskar M.N.U., Tawhid M.N.A., Chung T., Extended Kalman Filter (EKF) and K-means clustering approach for state space decomposition of autonomous mobile robots, in: 2012 7th International Conference on Electrical and Computer Engineering, IEEE, 2012, pp. 113–116.
[254]
Liu G., Zhu H., EM-FKF approach to an integrated navigation system, J. Aerosp. Eng. 27 (3) (2014) 621–630.
[255]
Chen Y., Li W., Wang Y., A robust adaptive indirect in-motion coarse alignment method for GPS/SINS integrated navigation system, Measurement 172 (2021).
[256]
Grejner-Brzezinska D., Toth C., Moafipoor S., Kwon J., Design and calibration of a neural network-based adaptive knowledge system for multi-sensor personal navigation, in: Proceedings of the 5 Th International Symposium on Mobil Mapping Technology MMT’07, 2007.
[257]
Narmatha P., Thangavel V., Vidhya D.S., A hybrid RF and vision aware fusion scheme for multi-sensor wireless capsule endoscopic localization, Wirel. Pers. Commun. (2021).
[258]
Turan M., Shabbir J., Araujo H., Konukoglu E., Sitti M., A deep learning based fusion of RGB camera information and magnetic localization information for endoscopic capsule robots, Int. J. Intell. Robot. Appl. 1 (4) (2017) 442–450.
[259]
Li C., Wang S., Zhuang Y., Yan F., Deep sensor fusion between 2D laser scanner and IMU for mobile robot localization, IEEE Sens. J. 21 (6) (2021) 8501–8509.
[260]
Wang Q., Luo H., Xiong H., Men A., Zhao F., Xia M., Ou C., Pedestrian dead reckoning based on walking pattern recognition and online magnetic fingerprint trajectory calibration, IEEE Internet Things J. (2020).
[261]
Chen C., Rosa S., Miao Y., Lu C.X., Wu W., Markham A., Trigoni N., Selective sensor fusion for neural visual-inertial odometry, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 10542–10551.
[262]
Clark R., Wang S., Wen H., Markham A., Trigoni N., Vinet: Visual-inertial odometry as a sequence-to-sequence learning problem, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, 2017.
[263]
Kim Y., Yoon S., Kim S., Kim A., Unsupervised balanced covariance learning for visual-inertial sensor fusion, IEEE Robot. Autom. Lett. 6 (2) (2021) 819–826.
[264]
Chen C., Zhao P., Lu C.X., Wang W., Markham A., Trigoni N., Deep-learning-based pedestrian inertial navigation: Methods, data set, and on-device inference, IEEE Internet Things J. 7 (5) (2020) 4431–4441.
[265]
Gan X., Yu B., Huang L., Li Y., Deep learning for weights training and indoor positioning using multi-sensor fingerprint, in: 2017 International Conference on Indoor Positioning and Indoor Navigation, IPIN, IEEE, 2017, pp. 1–7.
[266]
Belmonte-Hernández A., Hernández-Peñaloza G., Gutiérrez D.M., Álvarez F., SWiBluX: Multi-sensor deep learning fingerprint for precise real-time indoor tracking, IEEE Sens. J. 19 (9) (2019) 3473–3486.
[267]
Song X., Fan X., He X., Xiang C., Ye Q., Huang X., Fang G., Chen L.L., Qin J., Wang Z., CNNLoc: Deep-learning based indoor localization with WiFi fingerprinting, in: 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2019, pp. 589–595.
[268]
Van Buijtenen W.M., Schram G., Babuska R., Verbruggen H.B., Adaptive fuzzy control of satellite attitude by reinforcement learning, IEEE Trans. Fuzzy Syst. 6 (2) (1998) 185–194.
[269]
C. Goodall, N. El-Sheimy, Intelligent tuning of a Kalman filter using low-cost MEMS inertial sensors, in: Proceedings of 5th International Symposium on Mobile Mapping Technology (MMT’07), Padua, Italy, 2007, pp. 1–8.
[270]
Li Y., Hu X., Zhuang Y., Gao Z., Zhang P., El-Sheimy N., Deep reinforcement learning (DRL): Another perspective for unsupervised wireless localization, IEEE Internet Things J. (2019).
[271]
Gao X., Luo H., Ning B., Zhao F., Bao L., Gong Y., Xiao Y., Jiang J., RL-AKF: An Adaptive Kalman Filter Navigation Algorithm Based on Reinforcement Learning for Ground Vehicles, Remote Sens. 12 (11) (2020).
[272]
M. Cao, J. Chen, J. Wang, A Novel Vehicle Tracking Method for Cross-Area Sensor Fusion with Reinforcement Learning Based GMM, in: 2020 American Control Conference, ACC, pp. 442–447.
[273]
Rangesh A., Trivedi M.M., No blind spots: Full-surround multi-object tracking for autonomous vehicles using cameras and LiDARs, IEEE Trans. Intell. Veh. 4 (4) (2019) 588–599.
[274]
Huang X., Deng H., Zhang W., Song R., Li Y., Towards multi-modal perception-based navigation: A deep reinforcement learning method, IEEE Robot. Autom. Lett. 6 (3) (2021) 4986–4993.
[275]
Cao X., Zhuang Y., Yang X., Sun X., Wang X., A universal Wi-Fi fingerprint localization method based on machine learning and sample differences, Satell. Navig. 2 (1) (2021) 27.
[276]
Ham F.M., Brown R.G., Observability, eigenvalues, and Kalman filtering, IEEE Trans. Aerosp. Electron. Syst. AES-19 (2) (1983) 269–273.
[277]
Huai J., Lin Y., Zhuang Y., Shi M., Consistent right-invariant fixed-lag smoother with application to visual inertial SLAM, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 6084–6092. (7).
[278]
Yang Y., Huang G., Observability analysis of aided INS with heterogeneous features of points, lines, and planes, IEEE Trans. Robot. 35 (6) (2019) 1399–1418.
[279]
Huai J., Lin Y., Zhuang Y., Toth C.K., Chen D., Observability analysis and keyframe-based filtering for visual inertial odometry with full self-calibration, IEEE Trans. Robot. 38 (5) (2022) 3219–3237.
[280]
Zhuang Y., Wang Q., Shi M., Cao P., Qi L., Yang J., Low-cost localization for indoor mobile robots based on ensemble Kalman smoother using received signal strength, IEEE Internet Things J. (2019).
[281]
Nassar S., Improving the Inertial Navigation System (INS) Error Model for INS and INS/DGPS Applications, (Thesis) University of Calgary, 2003.
[282]
Li Y., Chen R., Niu X., Zhuang Y., Gao Z., Hu X., El-Sheimy N., Inertial sensing meets machine learning: Opportunity or challenge?, IEEE Trans. Intell. Transp. Syst. (2021) 1–17.
[283]
Zhao Y., Wong W.C., Feng T., Garg H.K., Efficient and scalable calibration-free indoor positioning using crowdsourced data, IEEE Internet Things J. 7 (1) (2020) 160–175.
[284]
Huck T., Westenberger A., Fritzsche M., Schwarz T., Dietmayer K., Precise timestamping and temporal synchronization in multi-sensor fusion, in: 2011 IEEE Intelligent Vehicles Symposium, IV, 2011, pp. 242–247.
[285]
Lei P., Li Z., Xue B., Zhang H., Zou X., Hybsync: Nanosecond wireless position and clock synchronization based on UWB communication with multisensors, J. Sensors 2021 (2021).
[286]
Li B., Rizos C., Lee H.K., Lee H.K., A GPS-slaved time synchronization system for hybrid navigation, GPS Solut. 10 (3) (2006) 207–217.
[287]
Skog I., Handel P., Time synchronization errors in loosely coupled GPS-aided inertial navigation systems, IEEE Trans. Intell. Transp. Syst. 12 (4) (2011) 1014–1023.
[288]
Lee H.K., Lee J.G., Jee G.-I., Calibration of measurement delay in global positioning system/strapdown inertial navigation system, J. Guid. Control Dyn. 25 (2) (2002) 240–247.
[289]
Jeong J., Cho Y., Shin Y.-S., Roh H., Kim A., Complex urban dataset with multi-level sensors from highly diverse urban environments, Int. J. Robot. Res. 38 (6) (2019) 642–657.
[290]
Choi Y., Kim N., Hwang S., Park K., Yoon J.S., An K., Kweon I.S., KAIST multi-spectral day/night data set for autonomous and assisted driving, IEEE Trans. Intell. Transp. Syst. 19 (3) (2018) 934–948.
[291]
Sun Q., Zhang Y., Wang J., Gao W., An improved FAST feature extraction based on RANSAC method of vision/SINS integrated navigation system in GNSS-denied environments, Adv. Space Res. 60 (12) (2017) 2660–2671.
[292]
Ash J.N., Moses R.L., Outlier compensation in sensor network self-localization via the EM algorithm, in: Proceedings.(ICASSP’05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005. Vol. 4, IEEE, 2005, pp. iv/749–iv/752.
[293]
Zhang T., Wang J., Zhang L., Guo L., A student’s T-based measurement uncertainty filter for SINS/USBL tightly integration navigation system, IEEE Trans. Veh. Technol. 70 (9) (2021) 8627–8638.
[294]
Hao Y., Xu A., Sui X., Wang Y., A modified extended Kalman filter for a two-antenna GPS/INS vehicular navigation system, Sensors 18 (11) (2018).
[295]
Liu S., Li L., Tang J., Wu S., Gaudiot J.-L., Creating autonomous vehicle systems, Synth. Lect. Comput. Sci. 6 (1) (2017) i–186.
[296]
G. Wan, X. Yang, R. Cai, H. Li, Y. Zhou, H. Wang, S. Song, Robust and Precise Vehicle Localization Based on Multi-Sensor Fusion in Diverse City Scenes, in: 2018 IEEE International Conference on Robotics and Automation, ICRA, pp. 4670–4677.
[297]
Y. Shao, C.K. Toth, D.A. Grejner-Brzezinska, L.B. Strange, High-accuracy vehicle localization using a pre-built probability map, in: ASPRS Imaging and Geospatial Technology Forum IGTF 2017, Baltimore, Maryland, 2017.
[298]
Merfels C., Stachniss C., Sensor fusion for self-localisation of automated vehicles, PFG – J. Photogramm. Remote Sens. Geoinf. Sci. 85 (2) (2017) 113–126.
[299]
Tardif J.-P., George M., Laverne M., Kelly A., Stentz A., A new approach to vision-aided inertial navigation, in: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, IEEE, 2010, pp. 4161–4168.
[300]
Moussa M., Moussa A., El-Sheimy N., Multiple ultrasonic aiding system for car navigation in GNSS denied environment, in: Position, Location and Navigation Symposium (PLANS), 2018 IEEE/ION, IEEE, 2018, pp. 133–140.
[301]
K. Dierenbach, S. Ostrowski, G. Jozkow, C. Toth, D. Grejner-Brzezinska, Z. Koppanyi, UWB for navigation in GNSS compromised environments, in: Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2015), Tampa, FL, USA, 2015, pp. 14–18.
[302]
Ruiz D., García E., Ureña J., de Diego D., Gualda D., García J.C., Extensive ultrasonic local positioning system for navigating with mobile robots, in: Positioning Navigation and Communication (WPNC), 2013 10th Workshop on, IEEE, 2013, pp. 1–6.
[303]
Fan Q., Sun B., Sun Y., Wu Y., Zhuang X., Data fusion for indoor mobile robot positioning based on tightly coupled INS/UWB, J. Navig. 70 (5) (2017) 1079–1097.
[304]
Biswas J., Veloso M., Wifi localization and navigation for autonomous indoor mobile robots, in: Robotics and Automation (ICRA), 2010 IEEE International Conference on, IEEE, 2010, pp. 4379–4384.
[305]
Chen Z., Zou H., Jiang H., Zhu Q., Soh Y.C., Xie L., Fusion of WiFi, smartphone sensors and landmarks using the Kalman filter for indoor localization, Sensors 15 (1) (2015) 715–732.
[306]
Yu S.-J., Jan S.-S., De Lorenzo D.S., Indoor navigation using Wi-Fi fingerprinting combined with pedestrian dead reckoning, in: Position, Location and Navigation Symposium (PLANS), 2018 IEEE/ION, IEEE, 2018, pp. 246–253.
[307]
Atia M., Noureldin A., Georgy J., Korenberg M., Bayesian filtering based WiFi/INS integrated navigation solution for GPS-denied environments, Navigation 58 (2) (2011) 111–125.
[308]
Li Z., Feng L., Yang A., Fusion based on visible light positioning and inertial navigation using extended Kalman filters, Sensors 17 (5) (2017) 1093.
[309]
Li Z., Yang A., Lv H., Feng L., Song W., Fusion of visible light indoor positioning and inertial navigation based on particle filter, IEEE Photonics J. 9 (5) (2017) 1–13.
[310]
Wang J., Hu A., Liu C., Li X., A floor-map-aided WiFi/pseudo-odometry integration algorithm for an indoor positioning system, Sensors 15 (4) (2015) 7096–7124.
[311]
Kim S.-E., Kim Y., Yoon J., Kim E.S., Indoor positioning system using geomagnetic anomalies for smartphones, in: Indoor Positioning and Indoor Navigation (IPIN), 2012 International Conference on, IEEE, 2012, pp. 1–5.
[312]
Crassidis J.L., Sigma-point Kalman filtering for integrated GPS and inertial navigation, IEEE Trans. Aerosp. Electron. Syst. 42 (2) (2006) 750–756.
[313]
Cui B., Chen X., Tang X., Improved cubature Kalman filter for GNSS/INS based on transformation of posterior sigma-points error, IEEE Trans. Signal Process. 65 (11) (2017) 2975–2987.
[314]
Gong X., Qin T., Airborne earth observation positioning and orientation by SINS/GPS integration using CD RTS smoothing, J. Navig. 67 (2) (2014) 211–225.
[315]
Liu X., Qu H., Zhao J., Yue P., Maximum correntropy square-root cubature Kalman filter with application to SINS/GPS integrated systems, ISA Trans. (2018).
[316]
Shen J., Su Y., Liang Q., Zhu X., Model aided airborne integrated navigation system based on an improved square-root unscented H∞ filter, Trans. Inst. Meas. Control (2018) 1–11.
[317]
Kaniewski P., Gil R., Konatowski S., Estimation of UAV position with use of smoothing algorithms, Metrol. Meas. Syst. 24 (1) (2017) 127–142.
[318]
Li K., Wang C., Huang S., Liang G., Wu X., Liao Y., Self-positioning for UAV indoor navigation based on 3D laser scanner, UWB and INS, in: Information and Automation (ICIA), 2016 IEEE International Conference on, IEEE, 2016, pp. 498–503.
[319]
Xu Y., Shmaliy Y.S., Ahn C.K., Shen T., Zhuang Y., Tightly coupled integration of INS and UWB using fixed-lag extended UFIR smoothing for quadrotor localization, IEEE Internet Things J. 8 (3) (2021) 1716–1727.
[320]
Chen C., Wang X., Qin W., Cui N., Vision-based relative navigation using cubature huber-based filtering, Aircr. Eng. Aerosp. Technol. (2018).
[321]
Zhang C., Guo C., Zhang D., Data fusion based on adaptive interacting multiple model for GPS/INS integrated navigation system, Appl. Sci. 8 (9) (2018) 1682.
[322]
Zhang C., Li T., Guo C., GPS/INS integration based on adaptive interacting multiple model, J. Eng. 2019 (15) (2019) 561–565.
[323]
Wu D., Jia Y., Wang L., Sun Y., Ship hull flexure measurement based on integrated GNSS/LINS, Front. Optoelectron. 12 (3) (2019) 332–340.
[324]
Zhang M., Wang Q., Guo Z., Research on integrated navigation of strap-down inertial navigation system and star sensor, in: 2017 Forum on Cooperative Positioning and Service, CPGPS, IEEE, 2017, pp. 11–15.
[325]
Wang Q., Li Y., Diao M., Gao W., Qi Z., Performance enhancement of INS/CNS integration navigation system based on particle swarm optimization back propagation neural network, Ocean Eng. 108 (2015) 33–45.
[326]
Ma X., Xia X., Zhang Z., Wang G., Qian H., Star image processing of SINS/CNS integrated navigation system based on 1DWF under high dynamic conditions, in: 2016 IEEE/ION Position, Location and Navigation Symposium, PLANS, IEEE, 2016, pp. 514–518.
[327]
Statheros T., Howells G., Maier K.M., Autonomous ship collision avoidance navigation concepts, technologies and techniques, J. Navig. 61 (1) (2008) 129–142.
[328]
Svilicic B., Rudan I., Jugović A., Zec D., A study on cyber security threats in a shipboard integrated navigational system, J. Mar. Sci. Eng. 7 (10) (2019) 364.
[329]
Tang D., Jiao Y., Chen J., On Automatic Landing System for carrier plane based on integration of INS, GPS and vision, in: 2016 IEEE Chinese Guidance, Navigation and Control Conference, CGNCC, IEEE, 2016, pp. 2260–2264.
[330]
Kurowski M., Roy S., Gehrt J.J., Damerius R., Buskens C., Abel D., Jeinsch T., Multi-vehicle guidance, navigation and control towards autonomous ship maneuvering in confined waters, in: 2019 18th European Control Conference, IEEE, New York, 2019.
[331]
Blain M., Lemieux S., Houde R., Implementation of a ROV navigation system using acoustic/Doppler sensors and Kalman filtering, in: OCEANS 2003. Proceedings, Vol. 3, IEEE, 2003, pp. 1255–1260.
[332]
Hegrenas O., Gade K., Hagen O.K., Hagen P.E., Underwater transponder positioning and navigation of autonomous underwater vehicles, in: OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges, IEEE, 2009, pp. 1–7.
[333]
Sheikh S.I., Pines D.J., Ray P.S., Wood K.S., Lovellette M.N., Wolff M.T., The use of X-ray pulsars for spacecraft navigation, Adv. Astronaut. Sci. 119 (1) (2005) 105–119.
[334]
Ning X., Fang J., An autonomous celestial navigation method for LEO satellite based on unscented Kalman filter and information fusion, Aerosp. Sci. Technol. 11 (2–3) (2007) 222–228.
[335]
Yang W., Li S., Li N., A switch-mode information fusion filter based on ISRUKF for autonomous navigation of spacecraft, Inf. Fusion 18 (2014) 33–42.
[336]
Jia B., Xin M., Vision-based spacecraft relative navigation using sparse-grid quadrature filter, IEEE Trans. Control Syst. Technol. 21 (5) (2013) 1595–1606.
[337]
Latva-aho M., Leppänen K., Clazzer F., Munari A., Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence (White Paper), University of Oulu, 2019.

Cited By

View all

Index Terms

  1. Multi-sensor integrated navigation/positioning systems using data fusion: From analytics-based to learning-based approaches
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Information Fusion
        Information Fusion  Volume 95, Issue C
        Jul 2023
        472 pages

        Publisher

        Elsevier Science Publishers B. V.

        Netherlands

        Publication History

        Published: 01 July 2023

        Author Tags

        1. Machine learning
        2. Data fusion
        3. Estimation
        4. Integrated navigation system
        5. Multi-sensor
        6. Positioning

        Qualifiers

        • Short-survey

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 19 Dec 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2025)Learning deformable hypothesis sampling for patchmatch multi-view stereo in the wildInformation Fusion10.1016/j.inffus.2024.102646113:COnline publication date: 1-Jan-2025
        • (2025)MREIFlowInformation Fusion10.1016/j.inffus.2024.102642113:COnline publication date: 1-Jan-2025
        • (2025)uLiDRInformation Fusion10.1016/j.inffus.2024.102579113:COnline publication date: 1-Jan-2025
        • (2024)Comprehensive systematic review of information fusion methods in smart cities and urban environmentsInformation Fusion10.1016/j.inffus.2024.102317107:COnline publication date: 1-Jul-2024
        • (2024)Advancements in variable rate spraying for precise spray requirements in precision agriculture using Unmanned aerial spraying SystemsComputers and Electronics in Agriculture10.1016/j.compag.2024.108841219:COnline publication date: 1-Apr-2024
        • (2024)A Survey on Scalable Wireless Indoor Localization: Techniques, Approaches and DirectionsWireless Personal Communications: An International Journal10.1007/s11277-024-11300-2136:3(1455-1496)Online publication date: 1-Jun-2024
        • (2023)RatioVLP: Ambient Light Noise Evaluation and Suppression in the Visible Light Positioning SystemIEEE Transactions on Mobile Computing10.1109/TMC.2023.331255023:5(5755-5769)Online publication date: 12-Sep-2023
        • (2023)Privacy protection in intelligent vehicle networkingInformation Fusion10.1016/j.inffus.2023.10182498:COnline publication date: 1-Oct-2023

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media