[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Event-based media processing and analysis

Published: 01 September 2016 Publication History

Abstract

Research on event-based processing and analysis of media is receiving an increasing attention from the scientific community due to its relevance for an abundance of applications, from consumer video management and video surveillance to lifelogging and social media. Events have the ability to semantically encode relationships of different informational modalities, such as visual-audio-text, time, involved agents and objects, with the spatio-temporal component of events being a key feature for contextual analysis. This unveils an enormous potential for exploiting new information sources and opening new research directions. In this paper, we survey the existing literature in this field. We extensively review the employed conceptualization of the notion of event in multimedia, the techniques for event representation and modeling, the feature representation and event inference approaches for the problems of event detection in audio, visual, and textual content. Furthermore, we review some key event-based multimedia applications, and various benchmarking activities that provide solid frameworks for measuring the performance of different event processing and analysis systems. We provide an in-depth discussion of the insights obtained from reviewing the literature and identify future directions and challenges. We survey the literature in event-based media processing and analysis.We examine the different definitions of events.We study various techniques for event representation and modeling.We survey feature representation, event inference approaches in multimedia content.We review event-based multimedia applications and various benchmarking activities.

References

[1]
J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM, 26 (1983) 832-843.
[2]
T. Althoff, H.O. Song, T. Darrell, Detection bank: an object detection based video representation for multimedia event recognition, in: Proceedings of the 20th ACM Int. Conf. on Multimedia, ACM, 2012, pp. 1065-1068.
[3]
G. Antoniou, F. van Harmelen, Web ontology language: OWL, in: Handbook on Ontologies, Springer, 2009, pp. 91-110.
[4]
K. Apostolidis, C. Papagiannopoulou, V. Mezaris, CERTH at MediaEval 2014 synchronization of multi-user event media task, 2014.
[5]
P. Appan, H. Sundaram, Networked multimedia event exploration, in: Proceedings of the 12th Annual ACM Int. Conf. on Multimedia, ACM, 2004, pp. 40-47.
[6]
S. Arestis-Chartampilas, N. Gkalelis, V. Mezaris, GPU accelerated generalised subclass discriminant analysis for event and concept detection in video, in: Proc. of the 23rd Annual ACM Conf. on Multimedia, ACM, 2015, pp. 1219-1222.
[7]
S.M. Assari, A.R. Zamir, M. Shah, Video classification using semantic concept co-occurrences, in: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conf. on, IEEE, 2014, pp. 2529-2536.
[8]
P.K. Atrey, N.C. Maddage, M.S. Kankanhalli, Audio based event detection for multimedia surveillance, in: Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE Int. Conf. on, 5, IEEE, 2006, pp. V-V.
[9]
F.R. Bach, G.R. Lanckriet, M.I. Jordan, Multiple kernel learning, conic duality, and the smo algorithm, in: Proceedings of the Twenty-first Int. Conf. on Machine Learning, ACM, 2004, pp. 6.
[10]
M. Baillie, J.M. Jose, Audio-based event detection for sports video, Springer, 2003.
[11]
L. Ballan, M. Bertini, A. Del Bimbo, L. Seidenari, G. Serra, Event detection and recognition for semantic annotation of video, Multimed. Tools Appl., 51 (2011) 279-302.
[12]
N. Baumgartner, W. Retschitzegger, A survey of upper ontologies for situation awareness, in: Proc. of the 4th IASTED Int. Conf. on Knowledge Sharing and Collaborative Engineering, St. Thomas, US VI, 2006, pp. 1-9.
[13]
H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-up robust features (SURF), Comput. Vis. Image Underst., 110 (2008) 346-359.
[14]
H. Becker, M. Naaman, L. Gravano, Learning similarity metrics for event identification in social media, in: Proceedings of the Third ACM Int. Conf. on Web Search and Data Mining, ACM, 2010, pp. 291-300.
[15]
Y. Bengio, Learning deep architectures for AI, Found. trends¿ Mach. Learn., 2 (2009) 1-127.
[16]
S. Bhattacharya, M.M. Kalayeh, R. Sukthankar, M. Shah, Recognition of complex events: exploiting temporal dynamics between underlying concepts, in: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conf. on, IEEE, 2014, pp. 2243-2250.
[17]
D.M. Blei, A.Y. Ng, M.I. Jordan, Latent dirichlet allocation, J. Mach. Learn. Res., 3 (2003) 993-1022.
[18]
R. Bolles, B. Burns, J. Herson, The 2014 SESAME multimedia event detection and recounting system, in: Proc. TRECVID Workshop, 2014.
[19]
M. Brand, Structure learning in conditional probability models via an entropic prior and parameter extinction, Neural Comput., 11 (1999) 1155-1182.
[20]
D. Brezeale, D.J. Cook, Automatic video classification: a survey of the literature, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., 38 (2008) 416-430.
[21]
G.J. Burghouts, J.-M. Geusebroek, Performance evaluation of local colour invariants, Comput. Vis. Image Underst., 113 (2009) 48-62.
[22]
L.-H. Cai, L. Lu, A. Hanjalic, H.-J. Zhang, L.-H. Cai, A flexible framework for key audio effects detection and auditory context inference, IEEE Trans. Audio Speech Lang. Process., 14 (2006) 1026-1039.
[23]
L. Cao, Y. Mu, A. Natsev, S.-F. Chang, G. Hua, J.R. Smith, Scene aligned pooling for complex video recognition, Springer, 2012.
[24]
M. Casey, Mpeg-7 sound-recognition tools, IEEE Trans. Circuits Syst. Video Technol., 11 (2001) 737-747.
[25]
I. Cervesato, M. Franceschet, A. Montanari, A guided tour through some extensions of the event calculus, Comput. Intell., 16 (2000) 307-347.
[26]
S.-F. Chang, D. Ellis, W. Jiang, K. Lee, A. Yanagawa, A.C. Loui, J. Luo, Large-scale multimodal semantic concept detection for consumer video, in: Proceedings of the Int. Workshop on Workshop on Multimedia Information Retrieval, ACM, 2007, pp. 255-264.
[27]
X. Chang, Y. Yang, G. Long, C. Zhang, A.G. Hauptmann, Dynamic concept composition for zero-example event detection, in: Proc. of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, USA, 2016, pp. 3464-3470.
[28]
X. Chang, Y. Yang, E. Xing, Y. Yu, Complex event detection using semantic saliency and nearly-isotonic svm, in: Proceedings of the 32nd International Conference on Machine Learning (ICML-15), 2015, pp. 1348-1357.
[29]
X. Chang, Y.-L. Yu, Y. Yang, A.G. Hauptmann, Searching persuasively: joint event detection and evidence recounting with limited supervision, in: Proceedings of the 23rd Annual ACM Conf. on Multimedia Conf., ACM, 2015, pp. 581-590.
[30]
K. Chatfield, V.S. Lempitsky, A. Vedaldi, A. Zisserman, The devil is in the details: an evaluation of recent feature encoding methods, in: BMVC, 2, 2011, pp. 8.
[31]
H. Chen, T. Finin, A. Joshi, The SOUPA ontology for pervasive computing, in: Ontologies for Agents: Theory and Experiences, Springer, 2005, pp. 233-258.
[32]
H. Chen, T. Finin, A. Joshi, Using owl in a pervasive computing broker, in: Tech. Rep, DTIC Document, 2005.
[33]
M.-y. Chen, A. Hauptmann, MoSIFT: recognizing human actions in surveillance videos, in: Technical Report CMU-CS, 2009.
[34]
H. Cheng, Z. Liu, Y. Zhao, G. Ye, X. Sun, Real world activity summary for senior home monitoring, Multimed. Tools Appl., 70 (2014) 177-197.
[35]
W.-H. Cheng, W.-T. Chu, J.-L. Wu, Semantic context detection based on hierarchical audio models, in: Proceedings of the 5th ACM SIGMM Int. Workshop on Multimedia Information Retrieval, ACM, 2003, pp. 109-115.
[36]
Y. Cheng, Q. Fan, S. Pankanti, A. Choudhary, Temporal sequence modeling for video event detection, in: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conf. on, IEEE, 2014, pp. 2235-2242.
[37]
W.-T. Chu, W.-H. Cheng, J.-L. Wu, J.Y.-j. Hsu, A study of semantic context detection by using svm and gmm approaches, in: Multimedia and Expo, 2004. ICME'04. 2004 IEEE Int. Conf. on, 3, IEEE, 2004, pp. 1591-1594.
[38]
W. Chung, H. Chen, L.G. Chaboya, C.D. OToole, H. Atabakhsh, Evaluating event visualization: a usability study of COPLINK spatio-temporal visualizer, Int. J. Hum. Comput. Stud., 62 (2005) 127-157.
[39]
C. Clavel, T. Ehrette, G. Richard, Events detection for an audio-based surveillance system, in: Multimedia and Expo, 2005. ICME 2005. IEEE Int. Conf. on, IEEE, 2005, pp. 1306-1309.
[40]
N.C. Codella, A. Natsev, G. Hua, M. Hill, L. Cao, L. Gong, J.R. Smith, Video event detection using temporal pyramids of visual semantics with kernel optimization and model subspace boosting, in: Multimedia and Expo (ICME), 2012 IEEE Int. Conf. on, IEEE, 2012, pp. 747-752.
[41]
N. Conci, F. De Natale, V. Mezaris, M. Matton, Synchronization of multi-user event media at mediaeval 2015: task description, datasets, and evaluation, in: MediaEval 2015 Workshop, Wurzen, Germany, 2015.
[42]
F. Cricri, K. Dabov, I.D. Curcio, S. Mate, M. Gabbouj, Multimodal extraction of events and of information about the recording activity in user generated videos, Multimed. Tools Appl., 70 (2014) 119-158.
[43]
N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conf. on, 1, 2005, pp. 886-893.
[44]
N. Dalal, B. Triggs, C. Schmid, Human detection using oriented histograms of flow and appearance, Springer, 2006.
[45]
M.-S. Dao, G. Boato, F. De Natale, T.-V. Nguyen, Jointly exploiting visual and non-visual information for event-related social media retrieval, in: Proc. of the 3rd ACM Conf. on Int. Conference on Multimedia Retrieval, ACM, 2013, pp. 159-166.
[46]
M.-S. Dao, D.-T. Dang-Nguyen, F. De Natale, Robust event discovery from photo collections using signature image bases (sibs), Multimed. Tools Appl., 70 (2014) 25-53.
[47]
S.B. Davis, P. Mermelstein, Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences, IEEE Trans. Acoust. Speech Signal Process., 28 (1980) 357-366.
[48]
L. Deligiannidis, F. Hakimpour, A.P. Sheth, Event visualization in a 3D environment, in: Human System Interactions, 2008 Conf. on, IEEE, 2008, pp. 158-164.
[49]
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: a large-scale hierarchical image database, in: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conf. on, IEEE, 2009, pp. 248-255.
[50]
M. Doerr, C.-E. Ore, S. Stead, The CIDOC conceptual reference model: a new standard for knowledge sharing, in: Tutorials, Posters, Panels and Industrial Contributions at the 26th Int. Conf. on Conceptual Modeling-Volume 83, Australian Computer Society, Inc., 2007, pp. 51-56.
[51]
K. Doman, T. Tomita, I. Ide, D. Deguchi, H. Murase, Event detection based on twitter enthusiasm degree for generating a sports highlight video, in: Proceedings of the ACM Int. Conf. on Multimedia, ACM, 2014, pp. 949-952.
[52]
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, Decaf: A Deep Convolutional Activation Feature for Generic Visual Recognition, 2013.
[53]
M. Douze, J. Revaud, C. Schmid, H. Jégou, Stable hyper-pooling and query expansion for event detection, in: Computer Vision (ICCV), 2013 IEEE Int. Conf. on, IEEE, 2013, pp. 1825-1832.
[54]
L. Duan, D. Xu, I.-H. Tsang, J. Luo, Visual event recognition in videos by learning from web data, IEEE Trans. Pattern Anal. Mach. Intell., 34 (2012) 1667-1680.
[55]
S.T. Dumais, Latent semantic analysis, Ann. Rev. Inf. Sci. Technol., 38 (2004) 188-230.
[56]
A. Ekin, R. Mehrotra, Integrated semantic-syntactic video modeling for search and browsing, IEEE Trans. Multimed., 6 (2004) 839-851.
[57]
M. Elhoseiny, J. Liu, H. Cheng, H. Sawhney, A. Elgammal, Zero-shot Event Detection by Multimodal Distributional Semantic Embedding of Videos, 2015.
[58]
M. Elhoseiny, B. Saleh, A. Elgammal, Write a classifier: zero-shot learning using purely textual descriptions, in: Computer Vision (ICCV), IEEE Int. Conf. on, IEEE, 2013, pp. 2584-2591.
[59]
J.P. Elo, M. Bugalho, I. Trancoso, J. Neto, A. Abad, A. Serralheiro, Non-speech audio event detection, in: Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE Int. Conf. on, IEEE, 2009, pp. 1973-1976.
[60]
D. Erhan, Y. Bengio, A. Courville, P. Vincent, Visualizing Higher-layer Features of a Deep Network, University of Montreal, 2009.
[61]
C. Farabet, C. Couprie, L. Najman, Y. LeCun, Learning hierarchical features for scene labeling, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013) 1915-1929.
[62]
C. Fraley, A.E. Raftery, How many clusters? Which clustering method? Answers via model-based cluster analysis, Comput. J., 41 (1998) 578-588.
[63]
A.R. Francois, R. Nevatia, J. Hobbs, R.C. Bolles, J.R. Smith, VERL: an ontology framework for representing and annotating video events, MultiMedia, IEEE, 12 (2005) 76-86.
[64]
A. Friedman, Framing pictures: the role of knowledge in automatized encoding and memory for gist., J. Exp. Psychol. Gen., 108 (1979) 316.
[65]
N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Machine learning, 29 (1997) 131-163.
[66]
C. Gan, M. Lin, Y. Yang, G. de Melo, A.G. Hauptmann, Concepts not alone: exploring pairwise relationships for zero-shot video activity recognition, in: Proceedings of the 30th AAAI Conf. on Artificial Intelligence (AAAI 2016), AAAI Press, 2016.
[67]
C. Gan, M. Lin, Y. Yang, Y. Zhuang, A.G. Hauptmann, Exploring semantic inter-class relationships (sir) for zero-shot action recognition, in: Twenty-Ninth AAAI Conf. on Artificial Intelligence, 2015.
[68]
C. Gan, N. Wang, Y. Yang, D.-Y. Yeung, A.G. Hauptmann, DevNet: a deep event network for multimedia event detection and evidence recounting, in: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 2568-2577.
[69]
A. Gangemi, V. Presutti, Ontology design patterns, in: Handbook on Ontologies, Springer, 2009, pp. 221-243.
[70]
P. Gehler, S. Nowozin, On feature combination for multiclass object classification, in: Computer Vision, 2009 IEEE 12th Int. Conf. on, 2009, pp. 221-228.
[71]
R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conf. on, 2014, pp. 580-587.
[72]
N. Gkalelis, F. Markatopoulou, A. Moumtzidou, D. Galanopoulos, K. Avgerinakis, N. Pittaras, S. Vrochidis, V. Mezaris, I. Kompatsiaris, I. Patras, ITI-CERTH participation to TRECVID 2014, in: Proc. TRECVID Workshop, 2014.
[73]
N. Gkalelis, V. Mezaris, Video event detection using generalized subclass discriminant analysis and linear support vector machines, in: Proc. of Int. Conf. on Multimedia Retrieval, ACM, 2014, pp. 25.
[74]
N. Gkalelis, V. Mezaris, I. Kompatsiaris, A joint content-event model for event-centric multimedia indexing, in: Semantic Computing (ICSC), 2010 IEEE Fourth Int. Conf. on, 2010, pp. 79-84.
[75]
N. Gkalelis, V. Mezaris, I. Kompatsiaris, High-level event detection in video exploiting discriminant concepts, in: Content-based Multimedia Indexing (CBMI), 2011 9th Int. Workshop on, 2011, pp. 85-90.
[76]
N. Gkalelis, V. Mezaris, I. Kompatsiaris, T. Stathaki, Video event recounting using mixture subclass discriminant analysis, in: Image Processing (ICIP), 2013 20th IEEE Int. Conf. on, 2013, pp. 4372-4376.
[77]
G. Gravier, C.-H. Demarty, S. Baghdadi, P. Gros, Classification-oriented structure learning in Bayesian networks for multimodal event detection in videos, Multimed. Tools Appl., 70 (2014) 1421-1437.
[78]
J. Guo, D. Scott, F. Hopfgartner, C. Gurrin, Detecting complex events in user-generated video using concept classifiers, in: Content-based Multimedia Indexing (CBMI), 2012 10th Int. Workshop on, 2012, pp. 1-6.
[79]
A. Gupta, R. Jain, Managing event information: modeling, retrieval, and applications, Synthesis Lectures on Data Management, 3 (2011) 1-141.
[80]
C. Gurrin, A.F. Smeaton, A.R. Doherty, Lifelogging: personal big data, Foundations and Trends in Information Retrieval, 8 (2014) 1-125.
[81]
A. Habibian, T. Mensink, C.G. Snoek, Composite concept discovery for zero-shot video event detection, in: Proceedings of Int. Conf. on Multimedia Retrieval, ACM, 2014, pp. 17.
[82]
A. Habibian, T. Mensink, C.G. Snoek, VideoStory: a new multimedia embedding for few-example recognition and translation of events, in: Proceedings of the ACM Int. Conf. on Multimedia, ACM, 2014, pp. 17-26.
[83]
A. Habibian, K.E. van de Sande, C.G. Snoek, Recommendations for video event recognition using concept vocabularies, in: Proceedings of the 3rd ACM Conf. on Int. Conf. on Multimedia Retrieval, ACM, 2013, pp. 89-96.
[84]
A. Hakeem, Y. Sheikh, M. Shah, CASE^ E: a hierarchical event representation for the analysis of videos, in: AAAI, 2004, pp. 263-268.
[85]
A. Härmä, M.F. McKinney, J. Skowronek, Automatic surveillance of the acoustic activity in our living environment, in: Multimedia and Expo, 2005. ICME 2005. IEEE Int. Conf. on, IEEE, 2005.
[86]
K. Iliakopoulou, S. Papadopoulos, Y. Kompatsiaris, News-oriented multimedia search over multiple social networks, in: Content-based Multimedia Indexing (CBMI), 2015 13th Int. Workshop on, IEEE, 2015, pp. 1-6.
[87]
IPTC Int. Press Telecommunications Council, London, UK. NewsML, https://iptc.org/standards/newsml-g2/.
[88]
Tech. rep., 2012. https://iptc.org/standards/eventsml-g2/
[89]
H. Izadinia, M. Shah, Recognizing complex events using large margin joint low-level event model, in: Computer Vision-ECCV 2012, Springer, 2012, pp. 430-444.
[90]
M. Jain, J.C. van Gemert, T. Mensink, C.G. Snoek, Objects2action: classifying and localizing actions without any video example, in: Proceedings of the IEEE Int. Conf. on Computer Vision, 2015, pp. 4588-4596.
[91]
R. Jain, EventWeb: developing a human-centered computing system, Computer (2008) 42-50.
[92]
H. Jegou, M. Douze, C. Schmid, Product quantization for nearest neighbor search, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011) 117-128.
[93]
H. Jégou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, C. Schmid, Aggregating local image descriptors into compact codes, IEEE Trans. Pattern Anal. Mach. Intell., 34 (2012) 1704-1716.
[94]
L. Jiang, A.G. Hauptmann, G. Xiang, Leveraging high-level and low-level features for multimedia event detection, in: Proceedings of the 20th ACM Int. Conf. on Multimedia, ACM, 2012, pp. 449-458.
[95]
L. Jiang, T. Mitamura, S.-I. Yu, A.G. Hauptmann, Zero-example event search using multimodal pseudo relevance feedback, in: Proceedings of Int. Conf. on Multimedia Retrieval, ACM, 2014, pp. 297.
[96]
L. Jiang, S.-I. Yu, D. Meng, T. Mitamura, A.G. Hauptmann, Bridging the ultimate semantic gap: a semantic search engine for internet videos, in: Int. Conf. on Multimedia Retrieval, 2015.
[97]
Y. Jiang, Q. Dai, T. Mei, Y. Rui, S. Chang, Super fast event recognition in internet videos, IEEE Trans. Multimed., 17 (2015) 1174-1186.
[98]
Y.-G. Jiang, S. Bhattacharya, S.-F. Chang, M. Shah, High-level event recognition in unconstrained videos, Int. J. Multimed. Inf. Retr., 2 (2013) 73-101.
[99]
Y.-G. Jiang, C.-W. Ngo, S.-F. Chang, Semantic context transfer across heterogeneous sources for domain adaptive video search, in: Proceedings of the 17th ACM Int. Conf. on Multimedia, ACM, 2009, pp. 155-164.
[100]
Y.-G. Jiang, J. Yang, C.-W. Ngo, A.G. Hauptmann, Representations of keypoint-based semantic concept detection: a comprehensive study, IEEE Trans. Multimedia, 12 (2010) 42-53.
[101]
S.-W. Joo, R. Chellappa, Attribute grammar-based event recognition and anomaly detection, in: Computer Vision and Pattern Recognition Workshop, 2006. CVPRW'06. Conf. on, IEEE, 2006, pp. 107-107.
[102]
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, L. Fei-Fei, Large-scale video classification with convolutional neural networks, in: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conf. on, IEEE, 2014, pp. 1725-1732.
[103]
A. Klaser, M. Marszałek, C. Schmid, A spatio-temporal descriptor based on 3D-gradients, in: BMVC 2008-19th British Machine Vision Conf., 2008, pp. 275-281.
[104]
R. Kowalski, M. Sergot, A logic-based calculus of events, in: Foundations of Knowledge Base Management, Springer, 1989, pp. 23-55.
[105]
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097-1105.
[106]
K.-T. Lai, D. Liu, M.-S. Chen, S.-F. Chang, Recognizing complex events in videos by learning key static-dynamic evidences, in: Computer Vision-ECCV 2014, Springer, 2014, pp. 675-688.
[107]
K.-T. Lai, F.X. Yu, M.-S. Chen, S.-F. Chang, Video event detection by inferring temporal instance labels, in: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conf. on, IEEE, 2014, pp. 2251-2258.
[108]
Z.-z. Lan, L. Bao, S.-I. Yu, W. Liu, A.G. Hauptmann, Multimedia classification and event detection using double fusion, Multimed. Tools Appl., 71 (2014) 333-347.
[109]
Z.-Z. Lan, Y. Yang, N. Ballas, S.-I. Yu, A. Haputmann, Resource constrained multimedia event detection, in: Multimedia Modeling, 2014, pp. 388-399.
[110]
I. Laptev, On space-time interest points, Int. J. Comput. Vision, 64 (2005) 107-123.
[111]
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE, 86 (1998) 2278-2324.
[112]
J. Leskovec, A. Rajaraman, J.D. Ullman, Mining of Massive Datasets, Cambridge University Press, 2014.
[113]
B. Li, M.I. Sezan, Event detection and summarization in sports video, in: Content-based Access of Image and Video Libraries, 2001.(CBAIVL 2001). IEEE Workshop on, IEEE, 2001, pp. 132-138.
[114]
L.-J. Li, H. Su, L. Fei-Fei, E.P. Xing, Object bank: a high-level image representation for scene classification & semantic feature sparsification, in: Advances in Neural Information Processing Systems, 2010, pp. 1378-1386.
[115]
W. Li, Q. Yu, A. Divakaran, N. Vasconcelos, Dynamic pooling for complex event recognition, in: Computer Vision (ICCV), 2013 IEEE Int. Conf. on, IEEE, 2013, pp. 2728-2735.
[116]
F. Lin, Embracing causality in specifying the indeterminate effects of actions, in: Proceedings of the thirteenth National Conf. on Artificial Intelligence-Volume 1, AAAI Press, 1996, pp. 670-676.
[117]
J. Liu, Q. Yu, O. Javed, S. Ali, A. Tamrakar, A. Divakaran, H. Cheng, H. Sawhney, Video event recognition using concept attributes, in: Applications of Computer Vision (WACV), 2013 IEEE Workshop on, IEEE, 2013, pp. 339-346.
[118]
A. Loui, J. Luo, S.-F. Chang, D. Ellis, W. Jiang, L. Kennedy, K. Lee, A. Yanagawa, Kodak's consumer video benchmark data set: concept definition and annotation, in: Proceedings of the Int. Workshop on Workshop on Multimedia Information Retrieval, ACM, 2007, pp. 245-254.
[119]
D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis., 60 (2004) 91-110.
[120]
L. Lu, F. Ge, Q. Zhao, Y. Yan, A svm-based audio event detection system, in: Electrical and Control Engineering (ICECE), 2010 Int. Conf. on, IEEE, 2010, pp. 292-295.
[121]
Z. Ma, Y. Yang, Y. Cai, N. Sebe, A.G. Hauptmann, Knowledge adaptation for ad hoc multimedia event detection with few exemplars, in: Proceedings of the 20th ACM Int. Conf. on Multimedia, ACM, 2012, pp. 469-478.
[122]
Z. Ma, Y. Yang, N. Sebe, A.G. Hauptmann, Knowledge adaptation with partiallyshared features for event detectionusing few exemplars, IEEE Trans. Pattern Anal. Mach. Intell., 36 (2014) 1789-1802.
[123]
Z. Ma, Y. Yang, N. Sebe, K. Zheng, A.G. Hauptmann, Multimedia event detection using a classifier-specific intermediate representation, IEEE Trans. Multimedia, 15 (2013) 1628-1637.
[124]
Z. Ma, Y. Yang, Z. Xu, N. Sebe, A.G. Hauptmann, We are not equally negative: fine-grained labeling for multimedia event detection, in: Proceedings of the 21st ACM Int. Conf. on Multimedia, ACM, 2013, pp. 293-302.
[125]
Z. Ma, Y. Yang, Z. Xu, S. Yan, N. Sebe, A.G. Hauptmann, Complex event detection via multi-source video attributes, in: Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conf. on, IEEE, 2013, pp. 2627-2633.
[126]
C.J. Matheus, M.M. Kokar, K. Baclawski, A core ontology for situation awareness, in: Proceedings of the Sixth Int. Conf. on Information Fusion, 1, 2003, pp. 545-552.
[127]
C.J. Matheus, M.M. Kokar, K. Baclawski, J.A. Letkowski, C. Call, M.L. Hinman, J.J. Salerno, D.M. Boulware, SAWA: an assistant for higher-level fusion and situation awareness, in: Defense and Security, Int. Society for Optics and Photonics, 2005, pp. 75-85.
[128]
C.J. Matheus, M.M. Kokar, K. Baclawski, J.J. Letkowski, An application of semantic web technologies to situation awareness, in: The Semantic Web-ISWC 2005, Springer, 2005, pp. 944-958.
[129]
M. Mazloom, E. Gavves, K. van de Sande, C. Snoek, Searching informative concept banks for video event detection, in: Proceedings of the 3rd ACM Conf. on Int. Conf. on Multimedia Retrieval, ACM, 2013, pp. 255-262.
[130]
M. Mazloom, X. Li, C.G. Snoek, TagBook: a semantic video representation without supervision for event detection, arXiv preprint arXiv:1510.02899, 2015.
[131]
T. Mensink, E. Gavves, C.G. Snoek, COSTA: co-occurrence statistics for zero-shot classification, in: Computer Vision and Pattern Recognition (CVPR), IEEE Conf. on, IEEE, 2014, pp. 2441-2448.
[132]
M. Merler, B. Huang, L. Xie, G. Hua, A. Natsev, Semantic model vectors for complex video event recognition, IEEE Trans. Multimedia, 14 (2012) 88-101.
[133]
P. Mettes, J.C. van Gemert, S. Cappallo, T. Mensink, C.G. Snoek, Bag-of-fragments: selecting and encoding video fragments for event detection and recounting, in: Proceedings of the 5th ACM on Int. Conf. on Multimedia Retrieval, ACM, 2015, pp. 427-434.
[134]
Y. Miao, L. Jiang, H. Zhang, F. Metze, Improvements to speaker adaptive training of deep neural networks, in: Spoken Language Technology Workshop (SLT), 2014 IEEE, IEEE, 2014, pp. 165-170.
[135]
Y. Ming, Human activity recognition based on 3D mesh mosift feature descriptor, in: Int. Conf. on Social Computing, SocialCom 2013, Washington, DC, USA, 8-14 September, 2013, 2013, pp. 959-962.
[136]
T.K. Moon, The expectation-maximization algorithm, IEEE Signal Process. Mag., 13 (1996) 47-60.
[137]
S. Mori, H. Nishida, H. Yamada, Optical Character Recognition, John Wiley & Sons, Inc., 1999.
[138]
N. Morsillo, G. Mann, C. Pal, Youtube scale, large vocabulary video annotation, in: Video Search and Mining, Springer, 2010, pp. 357-386.
[139]
A. Moumtzidou, A. Dimou, N. Gkalelis, S. Vrochidis, V. Mezaris, I. Kompatsiaris, ITI-CERTH participation to TRECVID 2010., in: TRECVID, 2010.
[140]
P. Natarajan, S. Wu, S. Vitaladevuni, X. Zhuang, S. Tsakalidis, U. Park, R. Prasad, P. Natarajan, Multimodal feature fusion for robust event detection in web videos, in: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conf. on, IEEE, 2012, pp. 1298-1305.
[141]
R. Nevatia, J. Hobbs, B. Bolles, An ontology for video event representation, in: Computer Vision and Pattern Recognition Workshop, 2004. CVPRW'04. Conf. on, IEEE, 2004, pp. 119-119.
[142]
T. Ojala, M. Pietikäinen, T. Mäenpää, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., 24 (2002) 971-987.
[143]
A. Oliva, A. Torralba, Modeling the shape of the scene: a holistic representation of the spatial envelope, Int. J. Comput. Vis., 42 (2001) 145-175.
[144]
D. Oneata, J. Verbeek, C. Schmid, Action and event recognition with fisher vectors on a compact feature set, in: Computer Vision (ICCV), 2013 IEEE Int. Conf. on, IEEE, 2013, pp. 1817-1824.
[145]
P. Over, G. Awad, M. Michel, J. Fiscus, G. Sanders, W. Kraaij, A.F. Smeaton, G. Quenot, An overview of the goals, tasks, data, evaluation mechanisms and metrics, in: Proc. of TRECVID 2014, NIST, USA, 2014.
[146]
N. Pahal, S. Chaudhury, V. Gaur, B. Lall, A. Mallik, Detecting and correlating video-based event patterns: an ontology driven approach, in: Proceedings of the 2014 IEEE/WIC/ACM Int. Joint Conf.s on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 01, IEEE Computer Society, 2014, pp. 438-445.
[147]
M. Palatucci, D. Pomerleau, G.E. Hinton, T.M. Mitchell, Zero-shot learning with semantic output codes, in: Advances in Neural Information Processing Systems 22, Curran Associates, Inc., 2009, pp. 1410-1418.
[148]
S. Papadopoulos, R. Troncy, V. Mezaris, B. Huet, I. Kompatsiaris, Social event detection at mediaeval 2011: challenges, dataset and evaluation., in: MediaEval, 2011.
[149]
C. Penet, C.-H. Demarty, G. Gravier, P. Gros, Audio event detection in movies using multiple audio words and contextual Bayesian networks, in: Content-based multimedia indexing (CBMI), 2013 11th Int. Workshop on, on, IEEE, 2013, pp. 17-22.
[150]
G. Petkos, S. Papadopoulos, Y. Kompatsiaris, Social event detection using multimodal clustering and integrating supervisory signals, in: Proceedings of the 2nd ACM Int. Conf. on Multimedia Retrieval, ACM, 2012, pp. 23.
[151]
G. Petkos, S. Papadopoulos, V. Mezaris, Y. Kompatsiaris, Social event detection at mediaeval 2014: challenges, datasets, and evaluation, in: MediaEval 2014 Workshop, Barcelona, Spain, 2014.
[152]
G. Petkos, S. Papadopoulos, V. Mezaris, R. Troncy, P. Cimiano, T. Reuter, Y. Kompatsiaris, Social event detection at mediaeval: a three-year retrospect of tasks and results, in: Proc. ACM ICMR 2014 Workshop on Social Events in Web Multimedia (SEWM), 2014.
[153]
P. Piasek, A.F. Smeaton, Using lifelogging to help construct the identity of people with dementia, in: Irish Human Computer Interaction Conf. 2014, DCU, Dublin, Ireland, 2014.
[154]
R. Poppe, A survey on vision-based human action recognition, Image Vis. Comput., 28 (2010) 976-990.
[155]
D. Potapov, M. Douze, Z. Harchaoui, C. Schmid, Category-specific video summarization, in: Computer Vision-ECCV 2014, Springer, 2014, pp. 540-555.
[156]
L. Rabiner, B.-H. Juang, Fundamentals of Speech Recognition, 1993.
[157]
D. Rafailidis, T. Semertzidis, M. Lazaridis, M.G. Strintzis, P. Daras, A data-driven approach for social event detection., in: MediaEval, 2013.
[158]
Y. Raimond, S. Abdallah, The event ontology, Tech. rep., in: Technical report 2007, 2007. http://motools.sourceforge.net/event
[159]
V. Ramanathan, K. Tang, G. Mori, L. Fei-Fei, Learning temporal embeddings for complex video analysis, in: Proceedings of the IEEE Int. Conf. on Computer Vision, 2015, pp. 4471-4479.
[160]
F. Reinders, F.H. Post, H.J. Spoelder, Visualization of time-dependent data with feature tracking and event detection, Vis. Comput., 17 (2001) 55-71.
[161]
T. Reuter, S. Papadopoulos, G. Petkos, V. Mezaris, Y. Kompatsiaris, P. Cimiano, P. de Vries, S. Geva, Social event detection at mediaeval 2013: challenges, datasets, and evaluation, in: Proceedings of the MediaEval 2013 Multimedia Benchmark Workshop Barcelona, Spain, October 18-19, 2013, 2013.
[162]
A. Rosani, G. Boato, F. De Natale, A game-based framework for event-saliency identification in images, IEEE Trans. Multimedia, 17 (2015) 1359-1371.
[163]
N. Rostamzadeh, J. Uijlings, I. Mironica, M.K. Abadi, B. Ionescu, N. Sebe, Cluster encoding for modelling temporal variation in video, in: Image Processing (ICIP), 2015 IEEE Int. Conf. on, IEEE, 2015.
[164]
C. Rudin, The p-norm push: a simple convex ranking algorithm that concentrates at the top of the list, J. Mach. Learn. Res., 10 (2009) 2233-2271.
[165]
M. Ruocco, H. Ramampiaro, A scalable algorithm for extraction and clustering of event-related pictures, Multimed. Tools Appl., 70 (2014) 55-88.
[166]
D. Sadlier, N.E. O'Connor, Event detection in field sports video using audio-visual features and a support vector machine, IEEE Trans. Circuits Syst. Video Technol., 15 (2005) 1225-1233.
[167]
T. Sakaki, M. Okazaki, Y. Matsuo, Earthquake shakes twitter users: real-time event detection by social sensors, in: Proceedings of the 19th Int. Conf. on World Wide Web, ACM, 2010, pp. 851-860.
[168]
J. Sánchez, F. Perronnin, T. Mensink, J. Verbeek, Image classification with the fisher vector: theory and practice, Int. J. Comput. Vis., 105 (2013) 222-245.
[169]
J.C. SanMiguel, J.M. Martínez, Á. García, An ontology for event detection and its application in surveillance video, in: Advanced Video and Signal Based Surveillance, 2009. AVSS'09. Sixth IEEE Int. Conf. on, IEEE, 2009, pp. 220-225.
[170]
H. Sayyadi, M. Hurst, A. Maykov, Event detection and tracking in social streams., in: ICWSM, 2009.
[171]
A. Scherp, S. Agaram, R. Jain, Event-centric media management, in: Electronic Imaging 2008, Int. Society for Optics and Photonics, 2008.
[172]
A. Scherp, T. Franz, C. Saathoff, S. Staab, F-a model of events based on the foundational ontology DOLCE+DnS Ultralight, in: Proceedings of the Fifth Int. Conf. on Knowledge Capture, ACM, 2009, pp. 137-144.
[173]
A. Scherp, V. Mezaris, Survey on modeling and indexing events in multimedia, Multimed. Tools Appl., 70 (2014) 7-23.
[174]
M. Schinas, S. Papadopoulos, G. Petkos, Y. Kompatsiaris, P.A. Mitkas, Multimodal graph-based event detection and summarization in social media streams, in: Proceedings of the 23rd Annual ACM Conf. on Multimedia Conf. ACM, 2015, pp. 189-192.
[175]
R. Shaw, R. Troncy, L. Hardman, LODE: linking open descriptions of events, in: The Semantic Web, Springer, 2009, pp. 153-167.
[176]
K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: visualising image classification models and saliency maps, arXiv preprint arXiv:1312.6034 .
[177]
K. Simonyan, A. Zisserman, Two-stream convolutional networks for action recognition in videos, in: Advances in Neural Information Processing Systems, 2014, pp. 568-576.
[178]
P. Sinclair, M. Addis, F. Choi, M. Doerr, P. Lewis, K. Martinez, The use of CRM core in multimedia annotation, in: In, First Int. Workshop on Semantic Web Annotations for Multimedia (SWAMM), Edinburgh, Scotland, 2006.
[179]
B. Singh, X. Han, Z. Wu, V.I. Morariu, L.S. Davis, Selecting relevant web trained concepts for automated event retrieval, in: Computer Vision (ICCV), 2015 IEEE Int. Conf. on, IEEE, 2015.
[180]
C.G. Snoek, M. Worring, Concept-based video retrieval, Found. Trends Inf. Retr., 2 (2008) 215-322.
[181]
C.G. Snoek, M. Worring, A.W. Smeulders, Early versus late fusion in semantic video analysis, in: Proceedings of the 13th Annual ACM Int. Conf. on Multimedia, ACM, 2005, pp. 399-402.
[182]
O. Standard, Common Alerting Protocol Version 1.2, 2010.
[183]
C. Sun, B. Burns, R. Nevatia, C. Snoek, B. Bolles, G. Myers, W. Wang, E. Yeh, ISOMER: informative segment observations for multimedia event recounting, in: Proceedings of Int. Conf. on Multimedia Retrieval, ACM, 2014, pp. 241.
[184]
C. Sun, R. Nevatia, ACTIVE: activity concept transitions in video event classification, in: Computer Vision (ICCV), 2013 IEEE Int. Conf. on, IEEE, 2013, pp. 913-920.
[185]
C. Sun, R. Nevatia, DISCOVER: discovering important segments for classification of video events and recounting, in: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conf. on, IEEE, 2014, pp. 2569-2576.
[186]
A. Tamrakar, S. Ali, Q. Yu, J. Liu, O. Javed, A. Divakaran, H. Cheng, H. Sawhney, Evaluation of low-level features and their combinations for complex event detection in open source videos, in: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conf. on, IEEE, 2012, pp. 3681-3688.
[187]
K. Tang, B. Yao, L. Fei-Fei, D. Koller, Combining the right features for complex event recognition, in: Computer Vision (ICCV), 2013 IEEE Int. Conf. on, IEEE, 2013, pp. 2696-2703.
[188]
W. Tong, Y. Yang, L. Jiang, S.-I. Yu, Z. Lan, Z. Ma, W. Sze, E. Younessian, A.G. Hauptmann, E-lamp: integration of innovative ideas for multimedia event detection, Mach. Vis. Appl., 25 (2014) 5-15.
[189]
C.-Y. Tsai, M.L. Alexander, N. Okwara, J.R. Kender, Highly efficient multimedia event recounting from user semantic preferences, in: Proceedings of Int. Conf. on Multimedia Retrieval, ACM, 2014, pp. 419.
[190]
C. Tzelepis, D. Galanopoulos, V. Mezaris, I. Patras, Learning to detect video events from zero or very few video examples, Image Vis. Comput. (2015).
[191]
C. Tzelepis, N. Gkalelis, V. Mezaris, I. Kompatsiaris, Improving event detection using related videos and relevance degree support vector machines, in: Proceedings of the 21st ACM Int. Conf. on Multimedia, ACM, 2013, pp. 673-676.
[192]
C. Tzelepis, V. Mezaris, I. Patras, Video event detection using kernel support vector machine with isotropic Gaussian sample uncertainty (KSVM-iGSU), in: MultiMedia Modeling - 22nd Int. Conf., MMM 2016, Miami, FL, USA, January 4-6, 2016, Proceedings, Part I, 2016, pp. 3-15.
[193]
A. Vahdat, K. Cannons, G. Mori, S. Oh, I. Kim, Compositional models for video event detection: a multiple kernel learning latent variable approach, in: Computer Vision (ICCV), 2013 IEEE Int. Conf. on, 2013, pp. 1185-1192.
[194]
W.R. Van Hage, V. Malaisé, G.K. de Vries, G. Schreiber, M.W. van Someren, Abstracting and reasoning over ship trajectories and web data with the simple event model (sem), Multimed. Tools Appl., 57 (2012) 175-197.
[195]
F. Van Harmelen, V. Lifschitz, B. Porter, Handbook of Knowledge Representation, Elsevier, 2008.
[196]
V.N. Vapnik, V. Vapnik, Statistical Learning Theory, Wiley New York, 1998.
[197]
H. Wang, A. Kläser, C. Schmid, C.-L. Liu, Action recognition by dense trajectories, in: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conf. on, 2011, pp. 3169-3176.
[198]
H. Wang, A. Kläser, C. Schmid, C.-L. Liu, Dense trajectories and motion boundary descriptors for action recognition, Int. journal of computer vision, 103 (2013) 60-79.
[199]
H. Wang, C. Schmid, Action recognition with improved trajectories, in: IEEE Int. Conf. on Computer Vision, Sydney, Australia, 2013. http://hal.inria.fr/hal-00873267
[200]
P. Wang, A. Smeaton, A. Mileo, Semantically enhancing multimedia lifelog events, in: Advances in Multimedia Information Processing-PCM 2014, Springer, 2014, pp. 163-172.
[201]
P. Wang, A.F. Smeaton, Aggregating semantic concepts for event representation in lifelogging, in: Proceedings of the Int. Workshop on Semantic Web Information Management, ACM, 2011, pp. 8.
[202]
X.H. Wang, D.Q. Zhang, T. Gu, H.K. Pung, Ontology based context modeling and reasoning using owl, in: Pervasive Computing and Communications Workshops, 2004. Proceedings of the Second IEEE Annual Conf. on, IEEE, 2004, pp. 18-22.
[203]
X.-J. Wang, S. Mamadgi, A. Thekdi, A. Kelliher, H. Sundaram, Eventory-an event based media repository, in: Semantic Computing, 2007. ICSC 2007. Int. Conf. on, IEEE, 2007, pp. 95-104.
[204]
H.-K. Wen, W.-C. Chang, C.-H. Chang, Y.-T. Lin, J.-L. Wu, Event detection in broadcasting video for halfpipe sports, in: Proceedings of the ACM Int. Conf. on Multimedia, ACM, 2014, pp. 727-728.
[205]
J. Weng, B.-S. Lee, Event detection in twitter., ICWSM, 11 (2011) 401-408.
[206]
U. Westermann, R. Jain, E-a generic event model for event-centric multimedia data management in echronicle applications, in: Data Engineering Workshops, 2006. Proceedings. 22nd Int. Conf. on, IEEE, 2006, pp. x106-x106.
[207]
U. Westermann, R. Jain, Toward a common event model for multimedia applications, IEEE MultiMedia (2007) 19-29.
[208]
F. Wood, C. Archambeau, J. Gasthaus, L. James, Y.W. Teh, A stochastic memoizer for sequence data, in: Proceedings of the 26th Annual Int. Conf. on Machine Learning, ACM, 2009, pp. 1129-1136.
[209]
S. Wu, S. Bondugula, F. Luisier, X. Zhuang, P. Natarajan, Zero-shot event detection using multi-modal fusion of weakly supervised concepts, in: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conf. on, IEEE, 2014, pp. 2665-2672.
[210]
Z. Xiong, R. Radhakrishnan, A. Divakaran, T.S. Huang, Audio events detection based highlights extraction from baseball, golf and soccer games in a unified framework, in: Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP'03). 2003 IEEE Int. Conf. on, vol. 5, IEEE, 2003, pp. V-632.
[211]
M. Xu, N.C. Maddage, C. Xu, M. Kankanhalli, Q. Tian, Creating audio keywords for event detection in soccer video, in: Multimedia and Expo, 2003. ICME'03. Proceedings. 2003 Int. Conf. on, vol. 2, IEEE, 2003, pp. II-281.
[212]
Z. Xu, I.W. Tsang, Y. Yang, Z. Ma, A.G. Hauptmann, Event detection using multi-level relevance labels and multiple features, in: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conf. on, IEEE, 2014, pp. 97-104.
[213]
Z. Xu, Y. Yang, A.G. Hauptmann, A discriminative cnn video representation for event detection, in: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 1798-1807.
[214]
Z. Xu, Y. Yang, I. Tsang, N. Sebe, A.G. Hauptmann, Feature weighting via optimal thresholding for video analysis, in: Computer Vision (ICCV), 2013 IEEE Int. Conf. on, IEEE, 2013, pp. 3440-3447.
[215]
W. Yan, D.F. Kieran, S. Rafatirad, R. Jain, A comprehensive study of visual event computing, Multimed. Tools Appl., 55 (2011) 443-481.
[216]
Y. Yang, Z. Ma, Z. Xu, S. Yan, A.G. Hauptmann, How related exemplars help complex event detection in web videos?, in: Computer Vision (ICCV), 2013 IEEE Int. Conf. on, IEEE, 2013, pp. 2104-2111.
[217]
Y. Yang, M. Shah, Complex events detection using data-driven concepts, in: Computer Vision-ECCV 2012, Springer, 2012, pp. 722-735.
[218]
S.S. Yau, J. Liu, Hierarchical situation modeling and reasoning for pervasive computing, in: Software Technologies for Future Embedded and Ubiquitous Systems, 2006 and the 2006 Second Int. Workshop on Collaborative Computing, Integration, and Assurance. SEUS 2006/WCCIA 2006. The Fourth IEEE Workshop on, IEEE, 2006, pp. 6-pp.
[219]
G. Ye, I.-H. Jhuo, D. Liu, Y.-G. Jiang, D. Lee, S.-F. Chang, Joint audio-visual bi-modal codewords for video event detection, in: Proceedings of the 2nd ACM Int. Conf. on Multimedia Retrieval, ACM, 2012, pp. 39.
[220]
G. Ye, Y. Li, H. Xu, D. Liu, S.-F. Chang, EventNet: a large scale structured concept library for complex event detection in video, in: Proceedings of the 23rd Annual ACM Conf. on Multimedia Conf., ACM, 2015, pp. 471-480.
[221]
G. Ye, D. Liu, I. Jhuo, S. Chang, Robust late fusion with multi-task low rank minimization, in: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conf. on, IEEE, 2012.
[222]
G. Ye, D. Liu, J. Wang, S.-F. Chang, Large-scale video hashing via structure learning, in: Computer Vision (ICCV), 2013 IEEE Int. Conf. on, IEEE, 2013, pp. 2272-2279.
[223]
J. Yin, A. Lampert, M. Cameron, B. Robinson, R. Power, Using social media to enhance emergency situation awareness, IEEE Intelligent Systems (2012) 52-59.
[224]
Q. Yu, J. Liu, H. Cheng, A. Divakaran, H. Sawhney, Multimedia event recounting with concept based representation, in: Proceedings of the 20th ACM Int. Conf. on Multimedia, ACM, 2012, pp. 1073-1076.
[225]
S.-I. Yu, L. Jiang, Z. Mao, X. Chang, X. Du, C. Gan, Z. Lan, Z. Xu, X. Li, Y. Cai, Informedia at TRECVID 2014 MED and MER, in: NIST TRECVID Video Retrieval Evaluation Workshop, 2014.
[226]
M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in: Computer Vision-ECCV 2014, Springer, 2014, pp. 818-833.
[227]
S. Zha, F. Luisier, W. Andrews, N. Srivastava, R. Salakhutdinov, Exploiting image-trained CNN architectures for unconstrained video classification, in: 26th British Machine Vision Conference (BMVC), 2015, pp. 60.1-60.13.
[228]
C. Zigkolis, S. Papadopoulos, G. Filippou, Y. Kompatsiaris, A. Vakali, Collaborative event annotation in tagged photo collections, Multimed. Tools Appl., 70 (2014) 89-118.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Image and Vision Computing
Image and Vision Computing  Volume 53, Issue C
September 2016
73 pages

Publisher

Butterworth-Heinemann

United States

Publication History

Published: 01 September 2016

Author Tags

  1. Event conceptualization
  2. Event representation and modeling
  3. Event-based applications and benchmarking
  4. Event-based media processing and analysis
  5. Multimedia event detection
  6. Survey of the literature

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Visual Emotion Analysis via Affective Semantic Concept DiscoveryScientific Programming10.1155/2022/69754902022Online publication date: 1-Jan-2022
  • (2022)Event detection in surveillance videos: a reviewMultimedia Tools and Applications10.1007/s11042-021-11864-281:24(35463-35501)Online publication date: 1-Oct-2022
  • (2019)Visual and Textual Analysis for Image Trustworthiness Assessment within Online NewsSecurity and Communication Networks10.1155/2019/92369102019Online publication date: 14-Apr-2019
  • (2019)How Deep Features Have Improved Event Recognition in MultimediaACM Transactions on Multimedia Computing, Communications, and Applications10.1145/330624015:2(1-27)Online publication date: 5-Jun-2019
  • (2019)A probabilistic topic model for event-based image classification and multi-label annotationImage Communication10.1016/j.image.2019.05.01276:C(283-294)Online publication date: 1-Aug-2019
  • (2019)Modeling affective character network for story analyticsFuture Generation Computer Systems10.1016/j.future.2018.01.03092:C(458-478)Online publication date: 1-Mar-2019
  • (2019)Social media and satellitesMultimedia Tools and Applications10.1007/s11042-018-5982-978:3(2837-2875)Online publication date: 1-Feb-2019
  • (2019)What's Happening Around the World? A Survey and Framework on Event Detection Techniques on TwitterJournal of Grid Computing10.1007/s10723-019-09482-217:2(279-312)Online publication date: 1-Jun-2019
  • (2018)A Context-Aware Late-Fusion Approach for Disaster Image Retrieval from Social MediaProceedings of the 2018 ACM on International Conference on Multimedia Retrieval10.1145/3206025.3206047(266-273)Online publication date: 5-Jun-2018
  • (2018)Ensemble of Deep Models for Event RecognitionACM Transactions on Multimedia Computing, Communications, and Applications10.1145/319966814:2(1-20)Online publication date: 1-May-2018
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media