[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Multi-device task offloading with time-constraints for energy efficiency in mobile cloud computing

Published: 01 November 2016 Publication History

Abstract

Nowadays, in order to deal with the increasingly complex applications on mobile devices, mobile cloud offloading techniques have been studied extensively to meet the ever-increasing energy requirements. In this study, an offloading decision method is investigated to minimize the energy consumption of mobile device with an acceptable time delay and communication quality. In general, mobile devices can execute a sequence of tasks in parallel. In the proposed offloading decision method, only parts of the tasks are offloaded for task characteristics to save the energy of multi-devices. The issue of the offloading decision is formulated as an NP-hard 0-1 nonlinear integer programming problem with time deadline and transmission error rate constraints. Through decision-variable relaxation from the integer to the real domain, this problem can be transformed as a continuous convex optimization. Based on Lagrange duality and the Karush-Kuhn-Tucker condition, a solution with coupled terms is derived to determine the priority of tasks for offloading. Then, an iterative decoupling algorithm with high efficiency is proposed to obtain near-optimal offloading decisions for energy saving. Simulation results demonstrate that considerable energy can be saved via the proposed method in various mobile cloud scenarios. A task offloading decision method is proposed among multi-devices for energy saving.The problem is formalized as a 0-1 nonlinear integer programming problem.An iterative decoupling algorithm that combines with decision-variable relaxation and convex optimization is proposed for near-optimal decisions.

References

[1]
Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014, pp. 2013-2018.
[2]
Y. Wen, W. Zhang, H. Luo, Energy-optimal mobile application execution: taming resource-poor mobile devices with cloud clones, in: IEEE International Conference on Computer Communications, INFOCOM 2012, Orlando, USA, March 2012, pp. 2716-2720.
[3]
H.T. Dinh, C. Lee, D. Niyato, P. Wang, A survey of mobile cloud computing: Architecture, applications, and approaches, Wirel. Commun. Mob. Comput., 13 (2013) 1587-1644.
[4]
Y. Cao, T. Jiang, C. Wang, Optimal radio resource allocation for mobile task offloading in cellular networks, IEEE Netw., 28 (2014) 68-73.
[5]
E. Ahmed, A. Gani, M.K. Khan, R. Buyyac, S.U. Khand, Seamless application execution in mobile cloud computing: motivation, taxonomy, and open challenges, J. Netw. Comput. Appl., 52 (2015) 154-172.
[6]
N. Fernando, S.W. Loke, W. Rahayu, Mobile cloud computing: A survey, Future Gener. Comput. Syst., 29 (2012) 84-106.
[7]
Z. Niu, TANGO: Traffic-aware network planning and green operation, IEEE Wirel. Commun., 18 (2011) 25-29.
[8]
M. Zapater, P. Arroba, J.L. Ayala, J.M. Moyab, K. Olcozc, A novel energy-driven computing paradigm for E-health scenarios, Future Gener. Comput. Syst., 34 (2014) 138-154.
[9]
K. Kumar, Y. Lu, Cloud computing for mobile users: Can offloading computation save energy?, IEEE Comput., 43 (2010) 51-56.
[10]
M.V. Barbera, S. Kosta, A. Mei, V.C. Perta, J. Stefa, Mobile offloading in the wild: Findings and lessons learned through a real-life experiment with a new cloud-aware system, in: IEEE International Conference on Computer Communications, INFOCOM 2014, Toronto, ON, Apr. 2014, pp. 2355-2363.
[11]
X. Chen, Decentralized computation offloading game for mobile cloud computing, IEEE Trans. Parallel Distrib. Syst., 26 (2014) 974-983.
[12]
Z. Sanaei, S. Abolfazli, A. Gani, R.K. Buyya, Heterogeneity in mobile cloud computing: Taxonomy and open challenges, IEEE Commun. Surv. Tutor., 16 (2013) 369-392.
[13]
K. Lai, H. Tang, H. Wang, S. Ding, D. Wang, Cloud offloading on customer-provided resources, in: IEEE Wireless Communications and Networking Conference, WCNC, Shanghai, China, Apr., 2013, pp. 4695-4700.
[14]
L. Yang, J. Cao, S. Tang, T. Li, A.T. Chan, A framework for partitioning and execution of data stream applications in mobile cloud computing, ACM SIGMETRICS Perform. Eval. Rev., 40 (2013) 23-32.
[15]
S. Kosta, A. Aucinas, H. Pan, R. Mortier, X. Zhang, Thinkair: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading, in: IEEE International Conference on Computer Communications, INFOCOM 2014, Toronto, ON, Apr. 2014, pp. 945-953.
[16]
X. Gu, A. Messer, I. Greenberg, D. Milojicic, K. Nahrstedt, Adaptive offloading for pervasive computing, IEEE Pervasive Comput., 3 (2004) 66-73.
[17]
F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, B. Li, Gearing resource-poor mobile devices with powerful clouds: architectures, challenges, and applications, IEEE Wirel. Commun., 20 (2013) 14-22.
[18]
S.H. Singh, Ming-Hau Lee, G. Lu, F.J. Kurdahi, N. Bagherzadeh, E.M. Chaves Filho, MorphoSys: An integrated reconfigurable system for data-parallel and computation-intensive applications, IEEE Trans. Comput., 49 (2000) 465-481.
[19]
D. Kovachev, T. Yu, R. Klamma, Adaptive computation offloading from mobile devices into the cloud, in: IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, ISPA, 2012, pp. 784-791.
[20]
X. Ma, Y. Zhao, L. Zhang, H.Y. Wang, L.M. Peng, When mobile terminals meet the cloud: Computation offloading as the bridge, IEEE Netw., 27 (2013) 28-33.
[21]
W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, D. Wu, Energy-optimal mobile cloud computing under stochastic wireless channel, IEEE Trans. Wireless Commun., 12 (2013) 4569-4581.
[22]
M.V. Barbera, S. Kosta, A. Mei, J. Stefa, To offload or not to offload? The bandwidth and energy costs of mobile cloud computing, in: IEEE International Conference on Computer Communications, INFOCOM 2013, Turin, Apr. 2013, pp. 1285-1293.
[23]
S. Wang, T. Lei, L. Zhang, C.H. Hsu, F. Yang, Offloading mobile data traffic for qos-aware service provision in vehicular cyber-physical systems, Future Gener. Comput. Syst. (2015).
[24]
D. Huang, P. Wang, D. Niyato, A dynamic offloading algorithm for mobile computing, IEEE Trans. Wireless Commun., 11 (2012) 1991-1995.
[25]
W. Zhang, Y. Wen, D.O. Wu, Collaborative task execution in mobile cloud computing under stochastic wireless channel, IEEE Trans. Wireless Commun., 14 (2014) 81-93.
[26]
A.E. Redondi, M. Cesana, L. Baroffio, M. Tagliasacchi, A mathematical programming approach to task offloading in visual sensor networks, in: IEEE 81st Vehicular Technology Conference, VTC Spring, Glasgow, May, 2015, pp. 1-5.
[27]
E. Cuervo, A. Balasubramanian, D.K. Cho, A. Wolman, S. Saroiu, R. Chandra, P. Bahl, Maui: Making smartphones last longer with code offload, in: MobiSys, ACM, 2010, pp. 49-62.
[28]
L. Al-Kanj, H.V. Poor, Z. Dawy, Optimal cellular offloading via device-to-device communication networks with fairness constraints, IEEE Trans. Wireless Commun., 13 (2014) 4628-4643.
[29]
X. Kang, Y.K. Chia, S. Sun, H.F. Chong, Mobile data offloading through a third-party wifi access point: An operator's perspective, IEEE Trans. Wireless Commun., 13 (2014) 5340-5351.
[30]
M. Mazzucco, M. Dumas, Reserved or on-demand instances? A revenue maximization model for cloud providers, in: IEEE International Conference on Cloud Computing, CLOUD, Washington, DC, Jul. 2011, pp. 428-435.
[31]
A. Stefanov, E. Erkip, Cooperative space-time coding for wireless networks, IEEE Trans. Commun., 53 (2005) 1804-1809.
[32]
V. Chandrasekhar, J. Andrews, A. Gatherer, Femtocell networks: a survey, IEEE Commun. Mag., 46 (2008) 59-67.
[33]
J. Liu, D. Goeckel, D. Towsley, Bounds on the gain of network coding and broadcasting in wireless networks, in: IEEE International Conference on Computer Communications, INFOCOM 2007, Anchorage, AK, May. 2007, pp. 724-732.
[34]
Y. Fan, Z. Zilic, BER testing of communication interfaces, IEEE Trans. Instrum. Meas., 57 (2008) 897-906.
[35]
K. Son, B. Krishnamachari, Speedbalance: Speed-scaling-aware optimal load balancing for green cellular networks, in: IEEE International Conference on Computer Communications, INFOCOM 2012, Orlando, USA, March 2012, pp. 2816-2820.
[36]
J. Kwak, Y. Kim, J. Lee, S. Chong, DREAM: Dynamic resource and task allocation for energy minimization in mobile cloud systems, IEEE J. Sel. Areas Commun., 33 (2015) 2510-2523.
[37]
D. Zhang, Y. Zhang, Y. Zhou, H. Liu, Leveraging the tail time for saving energy in cellular networks, IEEE Trans. Mob. Comput., 13 (2014) 1536-1549.
[38]
D. Li, X. Sun, Nonlinear Integer Programming, Vol. 84, Springer, 2006.
[39]
S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2009.
[40]
J. Kwak, O. Choi, S. Chong, P. Mohapatra, Processor-network speed scaling for energy-delay tradeoff in smartphone applications, IEEE/ACM Trans. Netw. Netw. (2015).

Cited By

View all
  • (2024)Hybrid metaheuristics for selective inference task offloading under time and energy constraints for real-time IoT sensing systemsCluster Computing10.1007/s10586-024-04578-127:9(12965-12981)Online publication date: 1-Dec-2024
  • (2022)Green IoT: A Short Survey on Technical Evolution & TechniquesWireless Personal Communications: An International Journal10.1007/s11277-021-09142-3123:1(525-553)Online publication date: 1-Mar-2022
  • (2022)Efficient deployment of multi‐UAV assisted mobile edge computingTransactions on Emerging Telecommunications Technologies10.1002/ett.445333:5Online publication date: 27-May-2022
  • Show More Cited By
  1. Multi-device task offloading with time-constraints for energy efficiency in mobile cloud computing

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Future Generation Computer Systems
      Future Generation Computer Systems  Volume 64, Issue C
      November 2016
      229 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 01 November 2016

      Author Tags

      1. Convex optimization
      2. Energy efficiency
      3. Mobile cloud computing
      4. Task offloading
      5. Time constraints

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 05 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Hybrid metaheuristics for selective inference task offloading under time and energy constraints for real-time IoT sensing systemsCluster Computing10.1007/s10586-024-04578-127:9(12965-12981)Online publication date: 1-Dec-2024
      • (2022)Green IoT: A Short Survey on Technical Evolution & TechniquesWireless Personal Communications: An International Journal10.1007/s11277-021-09142-3123:1(525-553)Online publication date: 1-Mar-2022
      • (2022)Efficient deployment of multi‐UAV assisted mobile edge computingTransactions on Emerging Telecommunications Technologies10.1002/ett.445333:5Online publication date: 27-May-2022
      • (2022)Energy‐efficient and delay‐aware multitask offloading for mobile edge computing networksTransactions on Emerging Telecommunications Technologies10.1002/ett.367333:3Online publication date: 21-Mar-2022
      • (2020)Energy Efficient Ant Colony Cloud Offloading Algorithm (EACO)Proceedings of the 9th International Conference on Software and Information Engineering10.1145/3436829.3436846(190-197)Online publication date: 11-Nov-2020
      • (2020)Energy-efficient and delay-aware mobile cloud offloading over cellular networksTelecommunications Systems10.1007/s11235-019-00585-573:1(131-142)Online publication date: 1-Jan-2020
      • (2019)A MEC-based distributed offloading model for ubiquitous and time-constraint offloadingProceedings of the 23rd IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications10.5555/3395101.3395106(25-32)Online publication date: 7-Oct-2019
      • (2019)Sustainable Offloading in Mobile Cloud ComputingACM Computing Surveys10.1145/328668852:1(1-37)Online publication date: 21-Feb-2019
      • (2019)Mobile Computation Offloading for Application Throughput Fairness and Energy EfficiencyIEEE Transactions on Wireless Communications10.1109/TWC.2018.286867918:1(3-19)Online publication date: 1-Jan-2019
      • (2019)An online context-aware mechanism for computation offloading in ubiquitous and mobile cloud environmentsThe Journal of Supercomputing10.1007/s11227-019-02743-775:7(3769-3809)Online publication date: 1-Jul-2019
      • Show More Cited By

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media