[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

On residuated lattices with left and right internal state

Published: 15 October 2019 Publication History

Abstract

In this paper, notions of left- and right-state operators on residuated lattices are introduced and some related properties of such operators are investigated. Filters and normal filters generated by a subset in a state residuated lattice are characterized and it is shown that the lattice of filters forms a frame. Subdirectly irreducible state residuated lattices are characterized. The notion of state coannihilator is introduced and a connection between them and Galois connection is established. Finally, it is shown that the set of state coannihilators forms a complete Boolean algebra.

References

[1]
P. Bahls, J. Cole, N. Galatos, P. Jipsen, C. Tsinakis, Cancellative residuated lattices, Algebra Univers. 50 (2003) 83–106.
[2]
K. Blount, C. Tsinakis, The structure of residuated lattices, Int. J. Algebra Comput. 13 (2003) 437–461.
[3]
B. Bosbach, Residuation groupoids, Results Math. 5 (1982) 107–122.
[4]
M. Botur, A. Dvurečenskij, State-morphism algebras – general approach, Fuzzy Sets Syst. 218 (2013) 90–102.
[5]
D. Buşneag, D. Piciu, On the lattice of filters of a pseudo BL-algebra, J. Mult.-Valued Log. Soft Comput. 10 (2006) 1–32.
[6]
L.C. Ciungu, Classes of residuated lattices, An. Univ. Craiova, Mat. Comp. Sci. Ser. 33 (2006) 189–207.
[7]
L.C. Ciungu, Bosbach and Riečan states on residuated lattices, J. Appl. Funct. Anal. 3 (2008) 175–188.
[8]
L.C. Ciungu, Directly indecomposable residuated lattices, Iran. J. Fuzzy Syst. 6 (2) (2009) 7–18.
[9]
L.C. Ciungu, A. Dvurečenskij, M. Hyčko, State BL-algebras, Soft Comput. 15 (2011) 619–634.
[10]
N.M. Constantinescu, On pseudo-BL algebras with internal state, Soft Comput. 16 (2012) 1915–1922.
[11]
N.M. Constantinescu, State filters on fuzzy structures with internal states, Soft Comput. 18 (2014) 1841–1852.
[12]
K. Denecke, M. Erné, S.L. Wismath, Galois Connections and Applications, Vol. 565, Springer Science & Business Media, 2013.
[13]
A. Di Nola, G. Georgescu, A. Iorgulescu, Pseudo BL-algebras, part I, Mult. Valued Log. 8 (2002) 673–714.
[14]
A. Di Nola, A. Dvurečenskij, State-morphism MV-algebras, Ann. Pure Appl. Logic 161 (2009) 161–173.
[15]
A. Di Nola, A. Dvurečenskij, On some classes of state morphism MV-algebras, Math. Slovaca 59 (2009) 517–534.
[16]
A. Di Nola, A. Dvurečenskij, A. Lettieri, On varieties of MV-algebras with internal states, Int. J. Approx. Reason. 51 (2010) 680–694.
[17]
A. Dvurečenskij, States on pseudo MV-algebras, Stud. Log. 68 (2001) 301–327.
[18]
A. Dvurečenskij, J. Rachůnek, On Riečan and Bosbach states for bounded non-commutative Rℓ-monoids, Math. Slovaca 56 (2006) 487–500.
[19]
A. Dvurečenskij, T. Kowalski, F. Montagna, State morphism MV-algebras, Int. J. Approx. Reason. 52 (2011) 1215–1228.
[20]
A. Dvurečenskij, J. Rachůnek, D. Šalounová, State operators on generalizations of fuzzy structures, Fuzzy Sets Syst. 187 (2012) 58–76.
[21]
T. Flaminio, F. Montagna, An algebraic approach to states on MV-algebras, in: V. Novák (Ed.), Fuzzy Logic 2, Proceedings of the 5th EUSFLAT Conference, September 11–14, Ostrava 2, 2007, pp. 201–206.
[22]
T. Flaminio, F. Montagna, MV-algebras with internal states and probabilistic fuzzy logic, Int. J. Approx. Reason. 50 (2009) 138–152.
[23]
P. Flondor, G. Georgescu, A. Iorgulescu, Pseudo t-norms and pseudo BL-algebras, Soft Comput. 5 (2001) 355–371.
[24]
N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Studies in Logic and the Foundations of Mathematics, Elsevier, Amsterdam, 2007.
[25]
G. Georgescu, A. Ioregulescu, Pseudo-MV algebras, Mult. Valued Log. 6 (2001) 95–135.
[26]
G. Georgescu, Bosbach states on fuzzy structures, Soft Comput. 8 (2004) 217–230.
[27]
G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott, Continuous Lattices and Domains, Cambridge University Press, Cambridge, 2003.
[28]
G. Grätzer, Lattice Theory, W. H. Freeman and Company, San Francisco, 1979.
[29]
P. Hájek, Metamathematics of Fuzzy Logic, Trends in Logic Studia Logica Library, vol. 4, Kluwer, Dordrecht, 1998.
[30]
M. Haveshki, M. Mohamadhasani, Extended filters in bounded commutative Rℓ-monoids, Soft Comput. 16 (2012) 2165–2173.
[31]
A. Iorgulescu, Algebras of Logic as BCK Algebras, Academy of Economic Studies, Press (Editura ASE), Bucharest, 2008.
[32]
P. He, X. Xin, Y. Yang, On state residuated lattices, Soft Comput. 19 (2015) 2083–2094.
[33]
P. Jipsen, C. Tsinakis, A survey of residuated lattices, in: J. Martinez (Ed.), Ordered Algebraic Structures, Kluwer Academic Publishers, Dordrecht, 2002, pp. 19–56.
[34]
W. Krull, Axiomatische Begrundung der allgemeinen Idealtheorie, Sitzungsberichte der Physikalisch Medizinischen Societat der Erlangen, vol. 56, 1924, pp. 47–63.
[35]
M. Kondo, Characterization of extended filters in residuated lattices, Soft Comput. 18 (2014) 427–432.
[36]
M. Kondo, Generalized state operators on residuated lattices, Soft Comput. (2016) 1–9.
[37]
F. Kôpka, F. Chovanec, D-posets, Math. Slovaca 44 (1994) 21–34.
[38]
T. Kowalski, H. Ono, Residuated lattices: an algebraic glimpse at logics without contraction, Jpn. Adv. Inst. Sci. Technol. (2001).
[39]
J. Kühr, Pseudo BL-algebras and DR-monoids, Math. Bohem. 128 (2003) 199–208.
[40]
D. Mundici, Averaging the truth value in Łukasiewicz sentential logic, Stud. Log. 55 (1995) 113–127.
[41]
D. Piciu, Algebras of Fuzzy Logic, Ed. Universitaria, Craiova, 2007.
[42]
J. Rachůnek, D. Šalounová, Filter theory of bounded residuated lattice ordered monoids, J. Mult.-Valued Log. Soft Comput. 16 (2010) 449–465.
[43]
B. Riečan, On the probability on BL-algebras, Acta Math. 4 (2002) 3–13.
[44]
B. Stanely, H.P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, Springer-Verlag, 1981.
[45]
E. Turunen, Mathematics Behind Fuzzy Logic, Advances in Soft Computing, Physica-Verlag, Heidelberg, 1999.
[46]
B. Van Gasse, G. Deschrijver, C. Cornelis, E.E. Kerre, Filters of residuated lattices and triangle algebras, Inf. Sci. 180 (16) (2010) 3006–3020.
[47]
M. Ward, R.P. Dilworth, Residuated lattices, Trans. Am. Math. Soc. 45 (1939) 335–354.

Cited By

View all
  • (2023)Mp- and purified residuated latticesSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-022-07583-x27:1(131-148)Online publication date: 1-Jan-2023
  • (2020)Topological residuated latticesSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-020-04709-x24:5(3179-3192)Online publication date: 1-Mar-2020

Index Terms

  1. On residuated lattices with left and right internal state
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image Fuzzy Sets and Systems
            Fuzzy Sets and Systems  Volume 373, Issue C
            Oct 2019
            184 pages

            Publisher

            Elsevier North-Holland, Inc.

            United States

            Publication History

            Published: 15 October 2019

            Author Tags

            1. Residuated lattice
            2. State residuated lattice
            3. Galois connection
            4. State filter
            5. State congruence
            6. Heyting algebra
            7. State coannihilator

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 28 Jan 2025

            Other Metrics

            Citations

            Cited By

            View all
            • (2023)Mp- and purified residuated latticesSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-022-07583-x27:1(131-148)Online publication date: 1-Jan-2023
            • (2020)Topological residuated latticesSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-020-04709-x24:5(3179-3192)Online publication date: 1-Mar-2020

            View Options

            View options

            Figures

            Tables

            Media

            Share

            Share

            Share this Publication link

            Share on social media