[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases

Published: 15 October 2015 Publication History

Abstract

Multi-cell thin-walled structures have proven fairly effective in energy absorption and have been extensively used in vehicle engineering. However, the effects of multi-cell configurations and oblique loads on the crashworthiness performance have been under studied. This paper aims to investigate the crash behaviors of different multi-cell hexagonal cross-sectional columns under axial and oblique loads comprehensively. The modeling results are first validated by comparing with the theoretical and experimental data. It is found that for the same cell number, the number of corners plays a significant role in enhancing energy absorption. Second, a multicriteria decision-making method, namely complex proportional assessment (COPRAS), is used to select the best possible sectional configuration under multiple loading angles. Finally, the Kriging modeling technique and multiobjective particle optimization (MOPSO) algorithm are employed to optimize the dimensions of such a cross-sectional configuration. The results exhibit that an optimized multi-cell sectional tube is more competent in crashworthiness for multiple load cases (MLC). Different cross-sectional configurations of multi-cell hexagonal tubes are compared.The multi-cell configurations are subjected to both axial and oblique loads.COPRASis used to select the best configuration considering multiple loading angles.Multi-objective optimization is conducted considering multiple loading cases.

References

[1]
Z. Ahmad, D.P. Thambiratnam, Application of foam-filled conical tubes in enhancing the crashworthiness performance of vehicle protective structures, Int. J. Crashworth., 14 (2009) 349-363.
[2]
Z. Ahmad, D.P. Thambiratnam, Crushing response of foam-filled conical tubes under quasi-static axial loading, Mater. Des., 30 (2009) 2393-2403.
[3]
Z. Ahmad, D.P. Thambiratnam, Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading, Comput. Struct., 87 (2009) 186-197.
[4]
F. Mat, K.A. Ismail, S. Yaacob, Z. Ahmad, Experimental and numerical analysis of foam-filled aluminum conical tubes subjected to oblique impact loading, Materialpruefung/Mater. Test., 56 (2014) 1001-1008.
[5]
X. An, Y. Gao, J. Fang, G. Sun, Q. Li, Crashworthiness design for foam-filled thin-walled structures with functionally lateral graded thickness sheets, Thin-Walled Struct., 91 (2015) 63-71.
[6]
J. Fang, Y. Gao, G. Sun, Y. Zhang, Q. Li, Parametric analysis and multiobjective optimization for functionally graded foam-filled thin-wall tube under lateral impact, Comput. Mater. Sci., 90 (2014) 265-275.
[7]
X. Zhang, H. Zhang, Optimal design of functionally graded foam material under impact loading, Int. J. Mech. Sci., 68 (2013) 199-211.
[8]
Z. Ahmad, D.P. Thambiratnam, A.C.C. Tan, Dynamic energy absorption characteristics of foam-filled conical tubes under oblique impact loading, Int. J. Impact Eng., 37 (2010) 475-488.
[9]
X. Zhang, G. Cheng, A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns, Int. J. Impact Eng., 34 (2007) 1739-1752.
[10]
H.-S. Kim, New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency, Thin-Walled Struct., 40 (2002) 311-327.
[11]
Z. Bai, H. Guo, B. Jiang, F. Zhu, L. Cao, A study on the mean crushing strength of hexagonal multi-cell thin-walled structures, Thin-Walled Struct., 80 (2014) 38-45.
[12]
W. Chen, T. Wierzbicki, Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption, Thin-Walled Struct., 39 (2001) 287-306.
[13]
X. Zhang, H. Zhang, Energy absorption of multi-cell stub columns under axial compression, Thin-Walled Struct., 68 (2013) 156-163.
[14]
A. Alavi Nia, M. Parsapour, An investigation on the energy absorption characteristics of square tubes, Thin-Walled Struct., 68 (2013) 26-34.
[15]
A. Najafi, M. Rais-Rohani, Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes, Thin-Walled Struct., 49 (2011) 1-12.
[16]
A. Reyes, M. Langseth, O. Hopperstad, Crashworthiness of aluminum extrusions subjected to oblique loading: experiments and numerical analyses, Int. J. Mech. Sci., 44 (2002) 1965-1984.
[17]
J. Song, F. Guo, A comparative study on the windowed and multi-cell square tubes under axial and oblique loading, Thin-Walled Struct., 66 (2013) 9-14.
[18]
T. Tran, S. Hou, X. Han, N. Nguyen, M. Chau, Theoretical prediction and crashworthiness optimization of multi-cell square tubes under oblique impact loading, Int. J. Mech. Sci., 89 (2014) 177-193.
[19]
G. Li, Z. Zhang, G. Sun, F. Xu, X. Huang, Crushing analysis and multiobjective optimization for functionally graded foam-filled tubes under multiple load cases, Int. J. Mech. Sci., 89 (2014) 439-452.
[20]
A. Reyes, O. Hopperstad, M. Langseth, Aluminum foam-filled extrusions subjected to oblique loading: experimental and numerical study, Int. J. Solids Struct., 41 (2004) 1645-1675.
[21]
A. Reyes, M. Langseth, O.S. Hopperstad, Square aluminum tubes subjected to oblique loading, Int. J. Impact Eng., 28 (2003) 1077-1106.
[22]
A. Alavi Nia, M. Parsapour, Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections, Thin-Walled Struct., 74 (2014) 155-165.
[23]
K. Fukuo, A. Fujimura, M. Saito, K. Tsunoda, S. Takiguchi, Development of the ultra-low-fuel-consumption hybrid car-INSIGHT, JSAE Rev., 22 (2001) 95-103.
[24]
N. Qiu, Y. Gao, J. Fang, Z. Feng, G. Sun, Q. Li, Theoretical prediction and crashworthiness optimization of multi-cell hexagonal tubes, Thin-walled Structures, submitted for publication.
[25]
S. Hou, Q. Li, S. Long, X. Yang, W. Li, Crashworthiness design for foam filled thin-wall structures, Mater. Des., 30 (2009) 2024-2032.
[26]
T. Tran, S. Hou, X. Han, M. Chau, Crushing analysis and numerical optimization of angle element structures under axial impact loading, Compos. Struct., 119 (2015) 422-435.
[27]
A.G. Hanssen, M. Langseth, O.S. Hopperstad, Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler, Int. J. Impact Eng., 24 (2000) 475-507.
[28]
I. McGregor, Impact performance of alumiimium structures, CRC Press, Boca Raton, FL, 2010.
[29]
G. Sun, G. Li, S. Hou, S. Zhou, W. Li, Q. Li, Crashworthiness design for functionally graded foam-filled thin-walled structures, Mater. Sci. Eng.: A, 527 (2010) 1911-1919.
[30]
M.A. Guler, M.E. Cerit, B. Bayram, B. Gerceker, E. Karakaya, The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading, Int. J. Crashworth., 15 (2010) 377-390.
[31]
P. Chatterjee, V.M. Athawale, S. Chakraborty, Materials selection using complex proportional assessment and evaluation of mixed data methods, Mater. Des., 32 (2011) 851-860.
[32]
E.K. Zavadskas, A. Kaklauskas, Z. Turskis, J. Tamošaitiene, Selection of the effective dwelling house walls by applying attributes values determined at intervals, J. Civ. Eng. Manag., 14 (2008) 85-93.
[33]
A. Kaklauskas, E.K. Zavadskas, V. Trinkunas, A multiple criteria decision support on-line system for construction, Eng. Appl. Artif. Intell., 20 (2007) 163-175.
[34]
E.K. Zavadskas, Z. Turskis, J. Tamošaitiene, V. Marina, Multicriteria selection of project managers by applying grey criteria, Technol. Econ. Dev. Econ., 14 (2008) 462-477.
[35]
A. Kaklauskas, E.K. Zavadskas, S. Raslanas, R. Ginevicius, A. Komka, P. Malinauskas, Selection of low-e windows in retrofit of public buildings by applying multiple criteria method COPRAS: a Lithuanian case, Energy Build., 38 (2006) 454-462.
[36]
E.K. Zavadskas, A. Kaklauskas, F. Peldschus, Z. Turskis, Multi-attribute assessment of road design solutions by using the COPRAS method, Balt. J. Road Bridg. Eng., 2 (2007).
[37]
F. Tarlochan, F. Samer, A.M.S. Hamouda, S. Ramesh, K. Khalid, Design of thin wall structures for energy absorption applications: enhancement of crashworthiness due to axial and oblique impact forces, Thin-Walled Struct., 71 (2013) 7-17.
[38]
J. Fang, Y. Gao, G. Sun, C. Xu, Y. Zhang, Q. Li, Optimization of spot-welded joints combined artificial bee colony algorithm with sequential kriging optimization, Adv. Mech. Eng. 2014.
[39]
J. Fang, Y. Gao, G. Sun, C. Xu, Q. Li, Fatigue optimization with combined ensembles of surrogate modeling for a truck cab, J. Mech. Sci. Technol., 28 (2014) 4641-4649.
[40]
J. Paz, J. Díaz, L. Romera, M. Costas, Crushing analysis and multi-objective crashworthiness optimization of GFRP honeycomb-filled energy absorption devices, Finite Elem. Anal. Des., 91 (2014) 30-39.
[41]
S. Hou, Q. Li, S. Long, X. Yang, W. Li, Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria, Finite Elem. Anal. Des., 43 (2007) 555-565.
[42]
Y. Liu, Optimum design of straight thin-walled box section beams for crashworthiness analysis, Finite Elem. Anal. Des., 44 (2008) 139-147.
[43]
Y. Xiang, Q. Wang, Z. Fan, H. Fang, Optimal crashworthiness design of a spot-welded thin-walled hat section, Finite Elem. Anal. Des., 42 (2006) 846-855.
[44]
H. Fang, M. Rais-Rohani, Z. Liu, M. Horstemeyer, A comparative study of metamodeling methods for multiobjective crashworthiness optimization, Comput. Struct., 83 (2005) 2121-2136.
[45]
Y.K. Gao, F. Sun, Multi-disciplinary optimisation for front auto body based on multiple optimisation methods, Int. J. Veh. Des., 57 (2011) 178-195.
[46]
J. Fang, Y. Gao, G. Sun, Q. Li, Multiobjective reliability-based optimization for design of a vehicledoor, Finite Elem. Anal. Des., 67 (2013) 13-21.
[47]
J. Fang, Y. Gao, G. Sun, Y. Zhang, Q. Li, Crashworthiness design of foam-filled bitubal structures with uncertainty, Int. J. Non-Linear Mech., 67 (2014) 120-132.
[48]
J.-S. Park, Optimal Latin-hypercube designs for computer experiments, J. Stat. Plan. Inference, 39 (1994) 95-111.
[49]
G. Sun, G. Li, Q. Li, Variable fidelity design based surrogate and artificial bee colony algorithm for sheet metal forming process, Finite Elem. Anal. Des., 59 (2012) 76-90.
[50]
C.A.C. Coello, G.T. Pulido, M.S. Lechuga, Handling multiple objectives with particle swarm optimization, IEEE Trans. Evol. Comput., 8 (2004) 256-279.
[51]
G. Sun, G. Li, Z. Gong, G. He, Q. Li, Radial basis functional model for multi-objective sheet metal forming optimization, Eng. Optim., 43 (2011) 1351-1366.
[52]
X. Liao, Q. Li, X. Yang, W. Zhang, W. Li, Multiobjective optimization for crash safety design of vehicles using stepwise regression model, Struct. Multidiscip. Optim., 35 (2008) 561-569.
[53]
C.R. Raquel, P.C. Naval, An effective use of crowding distance in multiobjective particle swarm optimization, 2005.
[54]
D. Liu, K.C. Tan, C.K. Goh, W.K. Ho, A multiobjective memetic algorithm based on particle swarm optimization, IEEE Trans. Syst. Man Cybern. Part B: Cybern., 37 (2007) 42-50.
[55]
B.-S. Jang, D.-E. Ko, Y.-S. Suh, Y.-S. Yang, Adaptive approximation in multi-objective optimization for full stochastic fatigue design problem, Mar. Struct., 22 (2009) 610-632.
[56]
B.S. Yang, Y.S. Yeun, W.S. Ruy, Managing approximation models in multiobjective optimization, Struct. Multidiscip. Optim., 24 (2002) 141-156.
[57]
G. Sun, X. Song, S. Baek, Q. Li, Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel, Struct. Multidiscip. Optim., 49 (2014) 897-913.
[58]
S. Barakat, K. Bani-Hani, M.Q. Taha, Multi-objective reliability-based optimization of prestressed concrete beams, Struct. Saf., 26 (2004) 311-342.
[59]
NHTSA-US NCAP, 2011 {http://www.safecarguide.com/exp/usncap/usncap.htm}.

Cited By

View all
  • (2024)A new cross-section layout method and geometrical parameter optimization for floor beams of rack car body considering modal factorsStructural and Multidisciplinary Optimization10.1007/s00158-024-03794-y67:5Online publication date: 11-May-2024
  • (2021)A two-stage approach to the optimization design of multi-cell square tubal structuresStructural and Multidisciplinary Optimization10.1007/s00158-020-02735-963:2(897-913)Online publication date: 1-Feb-2021
  • (2020)Crashworthiness analysis and collaborative optimization design for a novel crash-box with re-entrant auxetic coreStructural and Multidisciplinary Optimization10.1007/s00158-020-02568-662:4(2167-2179)Online publication date: 1-Oct-2020
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Finite Elements in Analysis and Design
Finite Elements in Analysis and Design  Volume 104, Issue C
October 2015
101 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 15 October 2015

Author Tags

  1. Complex proportional assessment
  2. Crashworthiness
  3. Multi-cell hexagonal tube
  4. Multiobjective optimization
  5. Oblique impact

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A new cross-section layout method and geometrical parameter optimization for floor beams of rack car body considering modal factorsStructural and Multidisciplinary Optimization10.1007/s00158-024-03794-y67:5Online publication date: 11-May-2024
  • (2021)A two-stage approach to the optimization design of multi-cell square tubal structuresStructural and Multidisciplinary Optimization10.1007/s00158-020-02735-963:2(897-913)Online publication date: 1-Feb-2021
  • (2020)Crashworthiness analysis and collaborative optimization design for a novel crash-box with re-entrant auxetic coreStructural and Multidisciplinary Optimization10.1007/s00158-020-02568-662:4(2167-2179)Online publication date: 1-Oct-2020
  • (2020)Crashworthiness optimisation for the rectangular tubes with axisymmetric and uniform thicknesses under offset loadingStructural and Multidisciplinary Optimization10.1007/s00158-020-02535-162:2(957-977)Online publication date: 1-Aug-2020
  • (2020)Crashworthiness analysis and multi-objective optimization of expanding circular tube energy absorbers with cylindrical anti-clamber under eccentric loading for subway vehiclesStructural and Multidisciplinary Optimization10.1007/s00158-019-02427-z61:4(1711-1729)Online publication date: 1-Apr-2020
  • (2020)Parallelized multiobjective efficient global optimization algorithm and its applicationsStructural and Multidisciplinary Optimization10.1007/s00158-019-02417-161:2(763-786)Online publication date: 1-Feb-2020
  • (2019)Multi-objective reliability-based design optimization for the VRB-VCS FLB under front-impact collisionStructural and Multidisciplinary Optimization10.1007/s00158-018-2142-959:5(1835-1851)Online publication date: 1-May-2019
  • (2018)Configurational optimization of multi-cell topologies for multiple oblique loadsStructural and Multidisciplinary Optimization10.1007/s00158-017-1839-557:2(469-488)Online publication date: 1-Feb-2018
  • (2018)Lightweight optimization of the side structure of automobile body using combined grey relational and principal component analysisStructural and Multidisciplinary Optimization10.1007/s00158-017-1749-657:1(441-461)Online publication date: 1-Jan-2018
  • (2017)Multi-objective and multi-case reliability-based design optimization for tailor rolled blank (TRB) structuresStructural and Multidisciplinary Optimization10.1007/s00158-016-1592-155:5(1899-1916)Online publication date: 1-May-2017

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media