Dog nose-print recognition based on the shape and spatial features of scales
References
[1]
H.B. Bae, D. Pak, S. Lee, Dog nose-print identification using deep neural networks, IEEE Access (2021) 49141–49153.
[2]
D. Blanc, V. Racine, A. Khalil, M. Deloche, J.A. Broyelle, I. Hammouamri, E. Sinitambirivoutin, M. Fiammante, E. Verdier, T. Besson, A. Sadate, M. Lederlin, F. Laurent, G. Chassagnon, G. Ferretti, Y. Diascorn, P.Y. Brillet, L. Cassagnes, C. Caramella, A. Loubet, N. Abassebay, P. Cuingnet, M. Ohana, J. Behr, A. Ginzac, H. Veyssiere, X. Durando, I. Bousaïd, N. Lassau, J. Brehant, Artificial intelligence solution to classify pulmonary nodules on CT, Diagnostic and Interventional Imaging 101 (12) (2020) 803–810.
[3]
M.V. Caya, E.D. Arturo, C.Q. Bautista, Dog identification system using noseprint biometrics, 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, Manila, Philippines, 28-30 Nov. 2021, 2021.
[4]
Y.K. Chan, C.C. Chang, Image matching using run-length feature, Pattern Recognition Letters 22 (5) (2001) 447–455.
[5]
Y.K. Chan, D.C. Huang, K.C. Liu, R.T. Chen, X. Jiang, An automatic indirect immunofluorescence cell segmentation system, Mathematical Problems in Engineering 2014 (2014) 1–13.
[6]
W.L. Chen, Nose pattern based dog identification with double-input VGG16 model, Master’s Thesis of National Chung Hsing University (2020) 1–43.
[7]
Y.H. Cheng, Iris Identification system based on YoloV3 and CNN, Master’s Thesis of National Chung Hsing University, 2020.
[8]
Y.C. Chi, Scaly pattern segmentation of dog nose print, Master’s Thesis of National Chung Hsing University (2019) 1–56.
[9]
S. Cho, J. Paeng, T. Kim, C. Kim, J.S. Kim, H. Kim, J. Kwon, Dog noseprint identification algorithm, 2021 International Conference on Information Networking (ICOIN), Jeju Island, Korea (South), 13-16 Jan. 2021, 2021.
[10]
H.I. Choi, M.Y. Kim, H.Y. Yoon, S. Lee, S.S. Choi, C.Y. Han, …., S.H. Kwon, Study on the viability of canine nose pattern as a unique biometric marker, Animals 11 (12) (2021) 3372.
[11]
H.I. Choi, Y. Lee, H. Shin, S. Lee, S.S. Choi, C.Y. Han, S.H. Kwon, The formation and invariance of canine nose pattern of beagle dogs from early puppy to young adult periods, Animals 11 (9) (2021) 2664.
[12]
R.A. Fisher, The use of multiple measurements in taxonomic problems, Annals of Eugenics 7 (2) (1936) 179–188.
[13]
D.E. Goldberg, J.H. Holland, Genetic algorithms and machine learning, Machine Learing 3 (1998) 95–99.
[14]
A. Hyvärinen, E. Oja, Independent component analysis: Algorithms and applications, Neural Networks 13 (4–5) (2000) 411–430.
[15]
M.K. Hu, Visual pattern recognition by moment invariants, IEEE Transactions on Information Theory 8 (2) (1962) 179–187.
[16]
A.M. Johnston, D.S. Edwards, Welfare implications of identification of cattle by ear tags, Veterinary Record 138 (25) (1996) 612–614.
[17]
D.H. Jang, K.S. Kwon, J.K. Kim, K.Y. Yang, J.B. Kim, Dog identification method based on muzzle pattern image, Applied Sciences 10 (24) (2020) 8994.
[18]
S. Kumar, A. Pandey, K.S.R. Satwik, S. Kumar, S.K. Singh, A.K. Singh, A. Mohan, Deep learning framework for recognition of cattle using muzzle point image pattern, Measurement 116 (2018) 1–17.
[19]
S. Kumar, S.K. Singh, Monitoring of pet animal in smart cities using animal biometrics, Future Generation Computer Systems 83 (2018) 553–563.
[20]
S. Kumar, S.K. Singh, Biometric Recognition for Pet Animal, Journal of Software Engineering and Applications 7 (5) (2014) 470–482.
[21]
Y. Kortli, M. Jridi, A.A. Falou, M. Atri, Face Recognition Systems: A Survey. Sensors 20 (2) (2020) 342.
[22]
Y.H. Lai, Texture feature based dog nostril image segmentation, Master’s Thesis of National Chung Hsing University (2020) 1–46.
[23]
J. Landt, The history of RFID, IEEE Potentials 24 (4) (2005) 8–11.
[24]
B. Li, Z. Wang, N. Wu, Dog noseprint matching with dual global descriptor based on contrastive learning, Computer Vision and Pattern Recognition (2022) Retrieved from arXiv:2206.00580.
[25]
Li, W. C. (2021). Combining multiple neural network technology for pigeon iris recognition. Master’s Thesis of National Chung Hsing University.
[26]
S. Liu, Y. Li, J. Zhou, J. Hu, N. Chen, Y. Shang, …., T. Li, Segmenting nailfold capillaries using an improved U-net network, Microvascular Research 130 (2020).
[27]
J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.
[28]
Meadows, L. B. (2005). Pet identification system and method. [S.l.]: Google Patents, jan. 18 2005. US Patent 6, 845,3 82.
[29]
U.T. Nguyen, A. Bhuiyan, L.A. Park, K. Ramamohanarao, An effective retinal blood vessel segmentation method using multi-scale line detection, Pattern Recognition 46 (3) (2013) 703–715.
[30]
A. Noviyanto, A.M. Arymurthy, Beef cattle identification based on muzzle pattern using a matching refinement technique in the SIFT method, Computers and Electronics in Agriculture 99 (2013) 77–84.
[31]
N. Otsu, A threshold selection method from gray-level histograms, IEEE Transactions On Systems, Man, and Cybernetics 9 (1) (1979) 62–66.
[32]
S.M. Pizer, E.P. Amburn, J.D. Austin, R. Cromartie, A. Geselowitz, T.H. Greer, J.B. Zimmerman, …., K. Zuiderveld, Adaptive histogram equalization and its variations, Computer Vision, Graphics, and Image Processing 39 (3) (1987) 355–368.
[33]
C. Poynton, Digital video and HD: Algorithms and Interfaces, Second edition, Morgan Kaufmann Publishers is an imprint of Elsevier 225 Wyman Street, Waltham MA 02451 USA, 2012.
[34]
J. Redmon, A. Farhadi, Yolov3: An incremental improvement, Retrieved from (2018) arXiv:1804.02767.
[35]
A.M. Reza, Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement, Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology 38 (1) (2004) 35–44.
[36]
O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention (2015) 234–241.
[37]
Shlens, J. (2014). A tutorial on principal component analysis. Retrieved from arXiv:1404.1100.
[38]
S.C. Yang, Texture features based dog nose print image matching, Master’s Thesis of National Chung Hsing University, 2021.
[39]
Yang, Y. T., & Chin, J. (2021). Report finds 6.19 percent rise in stray dog population. Taiwan News, Aug 21, 2021 (pp. 3), Available online: https://www.taipeitimes.com/News/taiwan/archives/2021/08/21/2003762978 (accessed on March 19, 2023).
[40]
J. Yao, Complete Gabor transformation for signal representation, IEEE Transactions on Image Processing 2 (2) (1993) 152–159.
Recommendations
Where is my puppy? Retrieving lost dogs by facial features
A pet that goes missing is among many people's worst fears: a moment of distraction is enough for a dog or a cat wandering off from home. Some measures help matching lost animals to their owners; but automated visual recognition is one that -- although ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Elsevier Ltd.
Publisher
Pergamon Press, Inc.
United States
Publication History
Published: 15 April 2024
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Reflects downloads up to 09 Feb 2025