Hybrid features extraction for the online mineral grades determination in the flotation froth using Deep Learning
References
[1]
Ai M., Xie Y., Tang Z., Zhang J., Gui W., Deep learning feature-based setpoint generation and optimal control for flotation processes, Inform. Sci. 578 (2021) 644–658,.
[2]
Ai M., Xie Y., Xu D., Gui W., Yang C., Data-driven flotation reagent changing evaluation via union distribution analysis of bubble size and shape, Can. J. Chem. Eng. 96 (2018) 2616–2626,.
[3]
Akhter M.M., Mohanty S.K., A fast O(NlgN) time hybrid clustering algorithm using the circumference proximity based merging technique for diversified datasets, Eng. Appl. Artif. Intell. 125 (2023),.
[4]
Aldrich C., Avelar E., Liu X., Recent advances in flotation froth image analysis, Miner. Eng. 188 (2022),.
[5]
Barnewold L., Lottermoser B., Identification of digital technologies and digitalisation trends in the mining industry, Int. J. Mining Sci. Technol. 30 (2020),.
[6]
Bendaouia A., Abdelwahed E.H., Qassimi S., Boussetta A., Benhayoun A., Benzakour I., Amar O., Zennayi Y., Bourzeix F., Baïna K., Baïna S., Khalil A., Cherkaoui M., Hasidi O., Digital transformation of the flotation monitoring towards an online analyzer, in: Hamlich M., Bellatreche L., Siadat A., Ventura S. (Eds.), Smart Applications and Data Analysis, in: Communications in Computer and Information Science, Springer International Publishing, Cham, 2022, pp. 325–338,.
[7]
Bendaouia A., Abdelwahed E.H., Qassimi S., Boussetta A., Benzakour I., Amar O., Hasidi O., Artificial intelligence for enhanced flotation monitoring in the mining industry: A ConvLSTM-based approach, Comput. Chem. Eng. (2023),.
[8]
Bi Y., Pan Y., Yu C., Wang M., Cui T., An end-to-end harmful object identification method for sizer crusher based on time series classification and deep learning, Eng. Appl. Artif. Intell. 120 (2023),.
[9]
Bui X.-N., Nguyen H., Le H.-A., Bui H.-B., Do N.-H., Prediction of blast-induced air over-pressure in open-pit mine: assessment of different artificial intelligence techniques, Nat. Resour. Res. 29 (2) (2020).
[10]
Cao W., Wang R., Fan M., Fu X., Wang H., Wang Y., A new froth image classification method based on the MRMR-SSGMM hybrid model for recognition of reagent dosage condition in the coal flotation process, Appl. Intell. (2022),.
[11]
Costa A.C.A.A., Campos F.V., Araujo L.R.G., Torres L.C.B., Braga A.P., Deep architecture for silica forecasting of a real industrial froth flotation process, Eng. Appl. Artif. Intell. 115 (2022),.
[12]
Farghaly H.M., Ali A.A., El-Hafeez T.A., Developing an efficient method for automatic threshold detection based on hybrid feature selection approach, in: Silhavy R. (Ed.), Artificial Intelligence and Bioinspired Computational Methods, in: Advances in Intelligent Systems and Computing, Springer International Publishing, Cham, 2020, pp. 56–72,.
[13]
Farrokhpay S., The significance of froth stability in mineral flotation — A review, Adv. Colloid Interface Sci. 166 (2011) 1–7,.
[14]
Gao X., Tang Z., Xie Y., Zhang H., Gui W., A layered working condition perception integrating handcrafted with deep features for froth flotation, Miner. Eng. 170 (2021),.
[15]
Gohel H.A., Upadhyay H., Lagos L., Cooper K., Sanzetenea A., Predictive maintenance architecture development for nuclear infrastructure using machine learning, Nucl. Eng. Technol. 52 (2020),.
[16]
Hasidi O., Abdelwahed E.H., Qazdar A., Boulaamail A., Krafi M., Benzakour I., Bourzeix F., Baïna S., Baïna K., Cherkaoui M., Bendaouia A., Digital twins-based smart monitoring and optimisation of mineral processing industry, in: Hamlich M., Bellatreche L., Siadat A., Ventura S. (Eds.), Smart Applications and Data Analysis, Springer International Publishing, Cham, 2022, pp. 411–424.
[17]
Imashuku S., Wagatsuma K., Identification of monazite and estimation of its content in ores by cathodoluminescence imaging, Miner. Eng. 173 (2021),.
[18]
Iphar M., Cukurluoz A.K., Fuzzy risk assessment for mechanized underground coal mines in Turkey, Int. J. Occup. Saf. Ergon. 26 (2020) 256–271.
[19]
Jose J.T., Das J., Mishra S.K., Wrat G., Early detection and classification of internal leakage in boom actuator of mobile hydraulic machines using SVM, Eng. Appl. Artif. Intell. 106 (2021),.
[20]
Jovanović I., Miljanović I., Jovanović T., Soft computing-based modeling of flotation processes – A review, Miner. Eng. 84 (2015) 34–63,.
[21]
Kaartinen J., Hätönen J., Hyötyniemi H., Miettunen J., Machine-vision-based control of zinc flotation—A case study, Control Eng. Pract. 14 (2006),.
[22]
Kaartinen J., Pietilä J., Remes A., Torttila S., Using a virtual flotation process to track a real flotation circuit, IFAC Proc. Vol. 46 (2013),.
[23]
Khalil M., McGough A.S., Pourmirza Z., Pazhoohesh M., Walker S., Machine Learning, Deep Learning and Statistical Analysis for forecasting building energy consumption — A systematic review, Eng. Appl. Artif. Intell. 115 (2022),.
[24]
Khan A.A., Mohanty S.K., A fast spectral clustering technique using MST based proximity graph for diversified datasets, Inform. Sci. 609 (2022) 1113–1131,.
[25]
Liu J., Gao Q., Tang Z., Xie Y., Gui W., Ma T., Niyoyita J.P., Online monitoring of flotation froth bubble-size distributions via multiscale deblurring and multistage jumping feature-fused full convolutional networks, IEEE Trans. Instrum. Meas. 69 (2020) 9618–9633,.
[26]
Maheshwari R., Mishra A.C., Mohanty S.K., An entropy-based density peak clustering for numerical gene expression datasets, Appl. Soft Comput. 142 (2023),.
[27]
Maheshwari R., Mohanty S.K., Mishra A.C., DCSNE: Density-based clustering using graph shared neighbors and entropy, Pattern Recognit. 137 (2023),.
[28]
Mamdouh Farghaly H., Abd El-Hafeez T., A high-quality feature selection method based on frequent and correlated items for text classification, Soft Comput. 27 (16) (2023) 11259–11274,.
[29]
McCoy J.T., Auret L., Machine learning applications in minerals processing: A review, Miner. Eng. 132 (2019),.
[30]
Popli K., Afacan A., Liu Q., Prasad V., Development of online soft sensors and dynamic fundamental model-based process monitoring for complex sulfide ore flotation, Miner. Eng. 124 (2018) 10–27.
[31]
Qassimi S., Abdelwahed E.H., Disruptive innovation in mining industry 4.0, in: Distributed Sensing and Intelligent Systems, in: Studies in Distributed Intelligence, Springer International Publishing, 2022, pp. 313–325,.
[32]
Rajapakse N., Zargar M., Sen T., Khiadani M., Effects of influent physicochemical characteristics on air dissolution, bubble size and rise velocity in dissolved air flotation: A review, Sep. Purif. Technol. 289 (2022).
[33]
Shi J., Tomasi M., Good features to track, 1994,.
[34]
Simonyan K., Zisserman A., Two-stream convolutional networks for action recognition in videos, in: Advances in Neural Information Processing Systems, Vol. 27, Curran Associates, Inc., 2014.
[35]
Tabaei M., Esfahani M.M., Rasekh P., Esna-ashari A., Mineral prospectivity mapping in GIS using fuzzy logic integration in Khondab area, western Markazi province, Iran, J. Tethys 5 (4) (2017) 367–379.
[36]
Takbiri-Borujeni A., Fathi E., Sun T., Rahmani R., Khazaeli M., Drilling performance monitoring and optimization: a data-driven approach, J. Pet. Explor. Prod. Technol. 9 (4) (2019).
[37]
Tian D., Li M., Shen Y., Han S., Intelligent mining of safety hazard information from construction documents using semantic similarity and information entropy, Eng. Appl. Artif. Intell. 119 (2023),.
[38]
Tran D., Bourdev L., Fergus R., Torresani L., Paluri M., Learning spatiotemporal features with 3D convolutional networks, in: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV ’15, IEEE Computer Society, 2015, pp. 4489–4497,.
[39]
Uusitalo S., Soudunsaari T., Sumen J., Haavisto O., Kaartinen J., Huuskonen J., Tuikka A., Rahkamaa-Tolonen K., Paaso J., Online analysis of minerals from sulfide ore using near-infrared Raman spectroscopy, J. Raman Spectrosc. 51 (6) (2020) 978–988.
[40]
Wang X., Zhou J., Song T., Liu D., Wang Q., FlotGAIL: An operational adjustment framework for flotation circuits using generative adversarial imitation learning, Miner. Eng. 183 (2022),.
[41]
Wen Z., Zhou C., Pan J., Nie T., Zhou C., Lu Z., Deep learning-based ash content prediction of coal flotation concentrate using convolutional neural network, Miner. Eng. 174 (2021),.
[42]
Xie J., Sage M., Zhao Y.F., Feature selection and feature learning in machine learning applications for gas turbines: A review, Eng. Appl. Artif. Intell. 117 (2023).
[43]
Zarie M., Jahedsaravani A., Massinaei M., Flotation froth image classification using convolutional neural networks, Miner. Eng. (2020),.
[44]
Zemouri R., Ibrahim R., Tahan A., Hydrogenerator early fault detection: Sparse Dictionary Learning jointly with the Variational Autoencoder, Eng. Appl. Artif. Intell. 120 (2023),.
[45]
Zhang X., Chen G., Wei Q., Building a highly-compact and accurate associative classifier, Appl. Intell. 34 (1) (2011) 74–86,.
[46]
Zhang D., Gao X., Soft sensor of flotation froth grade classification based on hybrid deep neural network, Int. J. Prod. Res. (2021),.
[47]
Zhang J., Tang Z., Liu J., Tan Z., Xu P., Recognition of flotation working conditions through froth image statistical modeling for performance monitoring, Miner. Eng. 86 (2016),.
[48]
Zhang J., Tang Z., Xie Y., Ai M., Gui W., Convolutional memory network-based flotation performance monitoring, Miner. Eng. 151 (2020),.
[49]
Zhang J., Tang Z., Xie Y., Ai M., Gui W., Generative adversarial network-based image-level optimal setpoint calculation for flotation reagents control, Expert Syst. Appl. 197 (2022),.
[50]
Zhang L., Xu D., Flotation bubble size distribution detection based on semantic segmentation, IFAC-PapersOnLine 53 (2020),.
[51]
Zhou W., Wen L., Zhan Y., Wang C., An appearance-motion network for vision-based crash detection: Improving the accuracy in congested traffic, IEEE Trans. Intell. Transp. Syst. (2023) 1–14,. Conference Name: IEEE Transactions on Intelligent Transportation Systems.
Recommendations
Study on the Improvement of Emulsified Flotation Reagent
ICDMA '12: Proceedings of the 2012 Third International Conference on Digital Manufacturing & AutomationFlotation experiments for Shanxi Dianping coal were carried out by diesel oil, ZFC and ZFC-1, and superior flotation parameter combinations of which were researched. The results show that ZFC-1 has better collectivity and selectivity to coal sample. The ...
Physics-based froth modelling: new developments and applications
CFD Methods of Mining and Mineral ProcessingThis article describes the use of a flotation froth model based on foam physics. The model is briefly described by introducing the structure of froths and the equations that govern foam motion and liquid drainage. The methodology of combining the ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Elsevier Ltd.
Publisher
Pergamon Press, Inc.
United States
Publication History
Published: 01 March 2024
Author Tags
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025