[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Quantification of event related brain patterns for the motor imagery tasks using inter-trial variance technique

Published: 01 February 2024 Publication History

Abstract

Quantification of event-related (de) synchronization (ERD/ERS) patterns is a challenging task in the field of motor imagery (MI)-based brain–computer interface (BCI). Accurately determining the optimal time and frequency band for localizing the ERD/ERS brain patterns is crucial in designing a robust MI-based BCI. To address above issue, this study proposes an inter-trial variance (IV) technique that focuses on localizing the ERD/ERS brain patterns and classifying the left and right hand imaginations of the subjects. The effectiveness of the proposed technique is validated using the BCI Competition-IV, Dataset-2b, which includes raw EEG signals from nine healthy subjects performing both left and right hand MI movements. In this technique, the sensorimotor frequency band (8–30 Hz) and its ERD/ERS brain patterns related to the left and right hand MI movements are derived from the signals. The obtained brain patterns are fed into various ML models, and the efficiency of the models is assessed using the classification accuracy (%CA) and Cohen’s kappa coefficient (K). The outcomes show that the proposed technique enhances the performance of the BCI system, classifying both left and right hand imaginations of the subjects with higher %CA (86.11%) and K (0.72), and outperforming the state-of-the-art techniques. This concludes that the ERD and ERS brain patterns extracted from the proposed technique are significant features in designing the MI-based BCI system.

References

[1]
Amiri S., Fazel-Rezai R., Asadpour V., A review of hybrid brain-computer interface systems, Adv. Hum.-Comput. Interact. 2013 (2013) 1.
[2]
Ang K.K., Chin Z.Y., Wang C., Guan C., Zhang H., Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b, Front. Neurosci. 6 (2012) 39.
[3]
Arvaneh M., Guan C., Ang K.K., Quek C., Optimizing the channel selection and classification accuracy in EEG-based BCI, IEEE Trans. Biomed. Eng. 58 (6) (2011) 1865–1873.
[4]
Bagh N., Reddy M.R., Second order difference plot to decode multi-class motor imagery activities, in: 2019 7th International Conference on Smart Computing & Communications, ICSCC, IEEE, 2019, pp. 1–4.
[5]
Bagh N., Reddy M.R., Hilbert transform-based event-related patterns for motor imagery brain computer interface, Biomed. Signal Process. Control 62 (2020).
[6]
Bagh N., Reddy T.J., Reddy M.R., Detection of motor imagery movements in EEG-based BCI, J. Inf. Sci. Eng. 36 (5) (2020).
[7]
Blankertz B., Dornhege G., Krauledat M., Müller K.-R., Curio G., The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects, NeuroImage 37 (2) (2007) 539–550.
[8]
Cao J., Hu D., Wang Y., Wang J., Lei B., Epileptic classification with deep-transfer-learning-based feature fusion algorithm, IEEE Trans. Cogn. Dev. Syst. 14 (2) (2021) 684–695.
[9]
Chen Z., Wang Y., Song Z., Classification of motor imagery electroencephalography signals based on image processing method, Sensors 21 (14) (2021) 4646.
[10]
Curran E.A., Stokes M.J., Learning to control brain activity: A review of the production and control of EEG components for driving brain–computer interface (BCI) systems, Brain Cogn. 51 (3) (2003) 326–336.
[11]
Dai M., Zheng D., Na R., Wang S., Zhang S., EEG classification of motor imagery using a novel deep learning framework, Sensors 19 (3) (2019) 551.
[12]
Duda R., Hart P., Y DG stork, pattern classification. John, 2012.
[13]
Farwell L.A., Donchin E., Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials, Electroencephalogr. clin. Neurophysiol. 70 (6) (1988) 510–523.
[14]
Feng B., Chen X., Chen Y., Yu T., Duan X., Liu K., Li K., Liu Z., Lin H., Li S., et al., Identifying solitary granulomatous nodules from solid lung adenocarcinoma: Exploring robust image features with cross-domain transfer learning, Cancers 15 (3) (2023) 892.
[15]
Feng B., Huang L., Liu Y., Chen Y., Zhou H., Yu T., Xue H., Chen Q., Zhou T., Kuang Q., et al., A transfer learning radiomics nomogram for preoperative prediction of borrmann type IV gastric cancer from primary gastric lymphoma, Front. Oncol. 11 (2022).
[16]
Gaur P., McCreadie K., Pachori R.B., Wang H., Prasad G., Tangent space features-based transfer learning classification model for two-class motor imagery brain–computer interface, Int. J. Neural Syst. 29 (10) (2019).
[17]
Gaur P., Pachori R.B., Wang H., Prasad G., An automatic subject specific intrinsic mode function selection for enhancing two-class EEG-based motor imagery-brain computer interface, IEEE Sens. J. 19 (16) (2019) 6938–6947.
[18]
Ha K.-W., Jeong J.-W., Motor imagery EEG classification using capsule networks, Sensors 19 (13) (2019) 2854.
[19]
Herculano-Houzel S., The human brain in numbers: a linearly scaled-up primate brain, Front. Hum. Neurosci. 3 (2009) 31.
[20]
Kalcher J., Pfurtscheller G., Discrimination between phase-locked and non-phase-locked event-related EEG activity, Electroencephalogr. Clin. Neurophysiol. 94 (5) (1995) 381–384.
[21]
Kim D.-H., Shin D.-H., Kam T.-E., Bridging the BCI illiteracy gap: a subject-to-subject semantic style transfer for EEG-based motor imagery classification, Front. Hum. Neurosci. 17 (2023).
[22]
Liu Guangquan H.G., BCI competion-IV reults, 2008, http://www.bbci.de/competition/iv/results/.
[23]
Mazzini L., Ferrero I., Luparello V., Rustichelli D., Gunetti M., Mareschi K., Testa L., Stecco A., Tarletti R., Miglioretti M., et al., Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial, Exp. Neurol. 223 (1) (2010) 229–237.
[24]
Nijholt A., Tan D., Pfurtscheller G., Brunner C., Millán J.d.R., Allison B., Graimann B., Popescu F., Blankertz B., Müller K.-R., Brain-computer interfacing for intelligent systems, IEEE Intell. Syst. 23 (3) (2008) 72–79.
[25]
Noirhomme Q., Kitney R.I., Macq B., Single-trial EEG source reconstruction for brain–computer interface, IEEE Trans. Biomed. Eng. 55 (5) (2008) 1592–1601.
[26]
Pfurtscheller G., Graphical display and statistical evaluation of event-related desynchronization (ERD), Electroencephalogr. Clin. Neurophysiol. 43 (5) (1977) 757–760.
[27]
Pfurtscheller G., Graz description of data set IV of BCI competition, 2008, http://www.bbci.de/competition/iv/.
[28]
Pfurtscheller G., Aranibar A., Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement, Electroencephalogr. Clin. Neurophysiol. 46 (2) (1979) 138–146.
[29]
Pfurtscheller G., Da Silva F.L., Event-related EEG/MEG synchronization and desynchronization: basic principles, Clin. Neurophysiol. 110 (11) (1999) 1842–1857.
[30]
Pfurtscheller G., Neuper C., Flotzinger D., Pregenzer M., EEG-based discrimination between imagination of right and left hand movement, Electroencephalogr. Clin. Neurophysiol. 103 (6) (1997) 642–651.
[31]
Rowland L.P., Shneider N.A., Amyotrophic lateral sclerosis, N. Engl. J. Med. 344 (22) (2001) 1688–1700.
[32]
Saa J.F.D., Cetin M., Hidden conditional random fields for classification of imaginary motor tasks from eeg data, in: 2011 19th European Signal Processing Conference, IEEE, 2011, pp. 171–175.
[33]
Sayed K., Kamel M., Alhaddad M., Malibary H.M., Kadah Y.M., Characterization of phase space trajectories for Brain-Computer Interface, Biomed. Signal Process. Control 38 (2017) 55–66.
[34]
Shahlaei F., Bagh N., Shaligram A., Reddy M.R., Zambare M., Classification of motor imagery tasks using inter trial variance in the brain computer interface, in: 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), IEEE, 2018, pp. 1–6.
[35]
Sun B., Wu Z., Hu Y., Li T., Golden subject is everyone: A subject transfer neural network for motor imagery-based brain computer interfaces, Neural Netw. 151 (2022) 111–120.
[36]
Vapnik V., The Nature of Statistical Learning Theory, Springer science & business media, 1999.
[37]
Vidal J.J., Toward direct brain-computer communication, Annu. Rev. Biophys. Bioeng. 2 (1) (1973) 157–180.
[38]
Wang X., Dai X., Liu Y., Chen X., Hu Q., Hu R., Li M., Motor imagery electroencephalogram classification algorithm based on joint features in the spatial and frequency domains and instance transfer, Front. Hum. Neurosci. 17 (2023).
[39]
Wang P., Jiang A., Liu X., Shang J., Zhang L., LSTM-based EEG classification in motor imagery tasks, IEEE Trans. Neural Syst. Rehabil. Eng. 26 (11) (2018) 2086–2095.
[40]
Wang C., Wu Y., Wang C., Zhu Y., Wang C., Niu Y., Shao Z., Gao X., Zhao Z., Yu Y., MI-EEG classification using Shannon complex wavelet and convolutional neural networks, Appl. Soft Comput. 130 (2022).
[41]
Xu Q., Zhou H., Wang Y., Huang J., Fuzzy support vector machine for classification of EEG signals using wavelet-based features, Med. Eng. Phys. 31 (7) (2009) 858–865.
[42]
Yang J., Ma Z., Wang J., Fu Y., A novel deep learning scheme for motor imagery EEG decoding based on spatial representation fusion, IEEE Access 8 (2020) 202100–202110.
[43]
Zhang H., Zhao X., Wu Z., Sun B., Li T., Motor imagery recognition with automatic EEG channel selection and deep learning, J. Neural Eng. 18 (1) (2021).

Cited By

View all
  • (2024)Nonlinear difference subspace method of motor imagery EEG classification in brain-computer interfaceDigital Signal Processing10.1016/j.dsp.2024.104720155:COnline publication date: 1-Dec-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence  Volume 126, Issue PB
Nov 2023
1566 pages

Publisher

Pergamon Press, Inc.

United States

Publication History

Published: 01 February 2024

Author Tags

  1. Brain–computer interface
  2. Electroencephalogram
  3. Event-related patterns
  4. Machine learning
  5. Motor imagery

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Nonlinear difference subspace method of motor imagery EEG classification in brain-computer interfaceDigital Signal Processing10.1016/j.dsp.2024.104720155:COnline publication date: 1-Dec-2024

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media