[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A hierarchical consensus method for the approximation of the consensus state, based on clustering and spectral graph theory

Published: 01 November 2016 Publication History

Abstract

A hierarchical method for the approximate computation of the consensus state of a network of agents is investigated. The method is motivated theoretically by spectral graph theory arguments. In a first phase, the graph is divided into a number of subgraphs with good spectral properties, i.e., a fast convergence toward the local consensus state of each subgraph. To find the subgraphs, suitable clustering methods are used. Then, an auxiliary graph is considered, to determine the final approximation of the consensus state in the original network. A theoretical investigation is performed of cases for which the hierarchical consensus method has a better performance guarantee than the non-hierarchical one (i.e., it requires a smaller number of iterations to guarantee a desired accuracy in the approximation of the consensus state of the original network). Moreover, numerical results demonstrate the effectiveness of the hierarchical consensus method for several case studies modeling real-world networks.

References

[1]
A.-L. Barabsi, R. Albert, Emergence of scaling in random networks, Science, 286 (1999) 509-512.
[2]
J. Batson, A. Spielman, N. Srivastava, S.-H. Teng, Spectral sparsification of graphs, Commun. ACM, 56 (2013) 87-94.
[3]
S. Battiston, J. Doyne Farmer, A. Flache, D. Garlaschelli, A.G. Haldane, H. Heesterbeek, C. Hommes, C. Jaeger, R. May, M. Scheffer, Complexity theory and financial regulation, Science, 351 (2016) 818-819.
[4]
B. Bollobs, Random Graphs, Springer, Cambridge, UK, 1998.
[5]
S. Boyd, P. Diaconis, L. Xiao, Fastest mixing Markov chain on a graph, SIAM Rev., 46 (2004) 667-689.
[6]
C. Castellano, S. Fortunato, V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys., 81 (2009) 591.
[7]
Chung, F., 1996. Laplacians of Graphs and Cheeger Inequalities, vol. 2. Bolyai Mathematical Society, Keszthely, pp. 157172.
[8]
F. Chung, Spectral Graph Theory, AMS, Providence, Rhode Island, 1997.
[9]
G. Como, F. Fagnani, S. Zampieri, I sistemi multi-agente e gli algoritmi di consenso, la matematica nella societ e nella cultura, Serie I, 5 (2012) 1-29.
[10]
M. Del Vicario, A. Bessi, F. Zollo, F. Petroni, A. Scala, G. Caldarelli, H.E. Stanley, W. Quattrociocchi, The spreading of misinformation online, Proc. Natl. Acad. Sci., 113 (2016) 554-559.
[11]
Epstein, M., Lynch, K., Johansson, K.H., Murray, R.M., 2008. Using hierarchical decomposition to speed up average consensus. In: Proceedings of the International Federation of Automatic Control (IFAC) World Congress, Seoul, Korea, pp. 612618.
[12]
F. Fagnani, Lectures on consensus dynamics over networks, INRIA Winter Sch. Complex Netw., 214 (2014).
[13]
V. Frias-Martinez, E. Frias-Martinez, Spectral clustering for sensing urban land use using Twitter activity, Eng. Appl. Artif. Intell., 35 (2014) 237-245.
[14]
F. Garin, L. Schenato, A survey on distributed estimation and control applications using linear consensus algorithms, in: Networked control systems, Lecture Notes in Control and Information Sciences, vol. 406, 2010, pp. 75-107.
[15]
Gnecco, G., Morisi, R., Bemporad, A., 2014. Sparse solutions to the average consensus problem via l1-norm regularization of the fastest mixing Markov-chain problem. In: Proceedings of the 53rd IEEE Int. Conf. on Decision and Control (CDC), IEEE, Los Angeles, pp. 22282233.
[16]
G. Gnecco, R. Morisi, A. Bemporad, Sparse solutions to the average consensus problem via various regularizations of the fastest mixing Markov-chain problem, IEEE Trans. Netw. Sci. Eng., 2 (2015) 97-111.
[17]
Heefeda, M., Gao, F., Abd-Almageed, W., 2012. Distributed approximate spectral clustering for large-scale datasets. In: Proceedings of the 21st International Symposium on High-Performance Parallel and Distributed Computing (HPDC), pp. 223234.
[18]
R. Langone, C. Alzate, B. De Ketelaere, J. Vlasselaer, W. Meert, J.A.K. Suykens, LS-SVM based spectral clustering and regression for predicting maintenance of industrial machines, Eng. Appl. Artif. Intell., 37 (2015) 268-278.
[19]
Li, X., Bai, H., 2012. Consensus on hierarchically decomposed topology to accelerate convergence and to improve delay robustness. In: Proceedings of the 24th Chinese Control and Decision Conf. (CCDC), IEEE, Taiyuan, China, pp. 597602.
[20]
Y.-Y. Liu, J.-J. Slotine, A.-L. Barabsi, Controllability of complex networks, Nature, 473 (2011) 167-173.
[21]
E. Lovisari, S. Zampieri, Performance metrics in the average consensus problem, Annu. Rev. Control, 36 (2012) 26-41.
[22]
M. Mesbahi, M. Egerstedt, Graph Theoretic Methods in Multiagent Networks, Princeton University Press, Princeton, 2010.
[23]
E. Mossel, J. Neeman, A. Sly, Reconstruction and estimation in the planted partition model, Probab. Theory Relat. Fields, 162 (2015) 431-461.
[24]
M. Newman, Networks: An Introduction, Oxford University Press, Oxford, 2010.
[25]
R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Epidemic processes in complex networks, Rev. Mod. Phys., 87 (2015) 925-979.
[26]
G. Vivaldo, E. Masi, C. Pandolfi, S. Mancuso, G. Caldarelli, Networks of plants, Sci. Rep., 11 (2016) 6.
[27]
U. von Luxburg, A tutorial on spectral clustering, Stat. Comput., 17 (2007) 395-416.
  1. A hierarchical consensus method for the approximation of the consensus state, based on clustering and spectral graph theory

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Engineering Applications of Artificial Intelligence
    Engineering Applications of Artificial Intelligence  Volume 56, Issue C
    November 2016
    107 pages

    Publisher

    Pergamon Press, Inc.

    United States

    Publication History

    Published: 01 November 2016

    Author Tags

    1. Approximation
    2. Clustering
    3. Consensus problem
    4. Hierarchical consensus
    5. Spectral graph theory

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 13 Dec 2024

    Other Metrics

    Citations

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media