[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Nonorientable biembeddings of cyclic Steiner triple systems generated by Skolem sequences

Published: 06 August 2015 Publication History

Abstract

We describe a class of Skolem sequences of order n such that for the cyclic Steiner triple system of order 6 n + 1 generated by any Skolem sequence from the class we can construct a bipartite index one current graph generating a nonorientable face 2-colorable triangular embedding of the complete graph K 6 n + 1 such that the triangular faces of one of the two color classes form the blocks of the cyclic Steiner triple system.

References

[1]
G.K. Bennett, M.J. Grannell, T.S. Griggs, Non-orientable biembeddings of Steiner triple systems of order 15, Acta Math. Univ. Comenian., 73 (2004) 101-106.
[2]
G.K. Bennett, M.J. Grannell, T.S. Griggs, Orientable self-embeddings of Steiner triple systems of order 15, Acta Math. Univ. Comenian., 75 (2006) 163-172.
[3]
C.P. Bonnington, M.J. Grannell, T.S. Griggs, J. Siran, Exponential families of non-isomorphic triangulations of complete graphs, J. Combin. Theory Ser. B, 78 (2000) 169-184.
[4]
M.J. Grannell, T.S. Griggs, A lower bound for the number of triangular embeddings of some complete graphs and complete regular tripartite graphs, J. Combin. Theory Ser. B, 98 (2008) 637-650.
[5]
M.J. Grannell, T.S. Griggs, M. Knor, A.R.W. Thrower, A census of the orientable biembeddings of Steiner triple systems of order 15, Australas. J. Combin., 42 (2008) 253-259.
[6]
M.J. Grannell, T.S. Griggs, J. Širáň, Recursive constructions for triangulations, J. Graph Theory, 39 (2002) 87-107.
[7]
M.J. Grannell, V.P. Korzhik, Nonorientable biembeddings of Steiner triple systems, Discrete Math., 285 (2004) 121-126.
[8]
M.J. Grannell, V.P. Korzhik, Orientable biembeddings of cyclic Steiner triple systems from current assignments on Möbius ladder graphs, Discrete Math., 309 (2009) 2847-2860.
[9]
J.L. Gross, T.W. Tucker, Topological Graph Theory, Wiley, New York, 1987.
[10]
G. Ringel, Map Color Theorem, Springer-Verlag, Berlin, 1974.
  1. Nonorientable biembeddings of cyclic Steiner triple systems generated by Skolem sequences

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Discrete Mathematics
      Discrete Mathematics  Volume 338, Issue 8
      August 2015
      265 pages

      Publisher

      Elsevier Science Publishers B. V.

      Netherlands

      Publication History

      Published: 06 August 2015

      Author Tags

      1. Complete graph
      2. Skolem sequence
      3. Steiner triple system
      4. Topological embedding

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 07 Jan 2025

      Other Metrics

      Citations

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media